

smartFEM

Analyse und Design elektrischer Antriebe

Benutzerhandbuch

smartFEM 2.014 - 22.01.2025

Copyright: Alle Rechte an diesem Dokument und der zugrunde liegenden Software, insbesondere das Recht der Nutzung, der Bearbeitung und Umgestaltung, der Übertragung von Rechten, der Veröffentlichung, der Vervielfältigung, der Verbreitung, der Vorführung sowie der Wiedergabe durch Bild- und Tonträger vorbehalten. Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung der elmoCAD Engineering GmbH.

Inhaltsverzeichnis

AI	obildu	Ingsverzeichnis		
Ei	nleitur	ng		
1	Instal	Illation		
	1.1	.NET Framework		
	1.2	smartFEM		
2	Start	t und Einstellungen		
	2.1	Start		
	2.2	Registrierung und Lizenzinformation		
	2.3	Einstellungen		
		2.3.1 smartFEM		
		2.3.1.1 Folders: Einstellungen der Ver	zeichnisse 19	
		2.3.1.2 Saving: Einstellungen für die S	peicherung von Modellen 20	
		2.3.1.3 General: Allgemeine Einstellun	gen 21	
		2.3.1.4 GUI: setting for the graphical u	ser interface	
		2.3.2 Projekt		
		2.3.3 Material Legende		
3	Entwi	vickeln mit smartFEM		
	3.1	Motorgeometrie		
		3.1.1 Entwicklungsschritte		
		3.1.2 Rotor		
		3.1.2.1 Geometrieparameter	28 vifiasha Coamatrian	
		3.1.2.2 "EditGeometry – benutzerspe		
		3.1.2.3 Flausiphilaisphulungen		
		3.1.2.5 Knotenketten	32	
		3.1.2.6 Anpassung von Knotenketten	33	
		3.1.3 Stator		
		3.1.4 Speichern, DXF- und FEMAG-Export		
	3.2	Materialien		
		3.2.1 Stator Wicklung		
		3.2.2 Stator und Rotor Eisen		
		3.2.3 Magnete		
		3.2.4 Relative Length		
		3.2.5 Material Explorer - Beschreibung nichtlin	earer Materialkennlinien 42	
		3.2.5.1 Elektroband		
		3.2.5.2 Permanentmagnete		
	3.3	Preprocessing		
	3.4	Feldbilder (Plots)		
		3.4.1 Definition und Anzeige von Feldbildern		
		3.4.2 WIODEIIDATER		
	0 F		Layout	
	3.5	WICKIUNGEN		
		3.5.1 Wicklungsparameter		
		3.5.3 Phasendiagramm		
3.6. Motornarameter und Berechnungen				
	3.0	3.6.1 Basis der Fraebnisberechnungen	50 کې جو	
		ster. Easis as Eigestiosofoonnangolinning		

		3.6.2 Cogging Torque und BEMF	59
		3.6.3 Expected Values	62
		3.6.4 Nominal Torque + Inductance	63
		3.6.4.1 Model Parameters Info	63
		3.6.4.2 Phase Shifts	64
		3.6.4.3 Calculation Parameters	64
		3.6.4.4 Stator Coll Excitation - Current Parameters	67
		3.6.5 Calculation	71
		3.6.7 Postprocessing - Forces and Torque	72
		3.6.7.1 Kraftberechnung	
		3672 Torque	77
		3.6.8 Postprocessing - Berechnung der Verluste (Loss Calculation)	82
		3.6.8.1 Polynomkoeffizienten	85
		3.6.8.2 Berechnung der Verluste für Linearmotoren	85
	3.7	Ld / Lg Identifikation	86
	3.8	Berechnung spezieller Effekte	89
	3.9	Grafische Darstellung und Auswertung der Ergebnisse	90
		3.9.1 Results	90
		3.9.1.1 Cogging Torque und BEMF	90
		3.9.1.2 Nominal Torque und Inductance	91
		3.9.1.3 Dynamic	91
	3.10	Speichern und Laden der Simulationsmodelle	92
4	Add-	ons	93
	4.1	Motor Diagramme	
		4.1.1 Durchführung der Berechnungen	98
		4.1.2 Diagrammbeispiele	99
		4.1.2.1 Drehmoment vs. Drehzahl	99
		4.1.2.2 Wirkungsgraddiagramme als Konturplots	102
		4.1.2.3 Torque Speed Feed Loop Tabelle (MTPA - Maximum Torque per Amp	ere)
		104 Ad O. Fistasha" Mala Disasan	100
		4.1.3 "Einfache" Motor Diagramme	106
	4.2	Motor Steuerung	107
	4.3	Allgemeine Konturplots	109
	4.4	AC-Losses	110
5	Simu	ation im Batch	114
	5.1	Beispiel für Batch-Datei mit sequentieller Durchführung der Simulationen	114
	5.2	Export von Ergebnisdaten in eine Textdatei	117
	5.3	Parallel Computing	118
		5.3.1 Batch MultiRun.bat	118
		5.3.2 _Batch_StartMultiRun.bat	120
		5.3.3 smartFEM	120
6	Spezi	elle Module	121
	6.1	PM - Magnetization - Inner Rotor	121
		6.1.1 Rotor und Magnetisierspule	121
		6.1.2 Berechnung und Auswertung der Luftspaltinduktion und Remanenz	124
		6.1.3 Verwendung von vormagnetisierten Rotoren in Motormodellen	126
	6.2	PM DC Brushed Motor	127
	6.3	Synchronous Motor (fremderregt)	130
		6.3.1 Synchronous Motor - Field Plots	133

	6.4	Switched Reluctance Motor	. 134
	6.5	Synchronous Reluctance Mator	. 137
		6.5.1 Synchronous Reluctance Motor PM-Assisted	. 138
	6.6	Universal Motor	. 140
		6.6.1 Berechnung der Kommutierungsreihenfolge "Commutation Sequence"	. 142
		6.6.2 Berechnung des Drehmoments während der Kommutierung "Switching Torque"	. 143
		6.6.3 Berechnung des Drehmoments im AC- oder DC-Betrieb "Motor Torque"	144
	c 7	0.0.4 Derechnung der Rotorposition zur Positionierung der Bursten	. 145
	6.7	PM - Linear Motor	1/16
		6.7.2 Berechnung der Verluste	140
	6.8	Aktuator	149
-	Cahr	- Hereiten	450
1	Schn	Russenen	. 153
	7.1	Export von Ergebnisdaten als tabellarischer Text	. 153
	7.2	Dokumentation "Project Report"	. 154
	7.3	FEMAG	. 156
	7.4	CAD - DXF Import	. 157
		7.4.1 lopologien	. 157
		7.4.2 DXF IMport	162
		7.4.3 Deispiele	163
		7.4.3.2 Beispiel für eine Rotoraeometrie mit Knotendichten	. 164
		7.4.3.3 Beispiel einer Rotorgeometrie mit "SPLINE"	. 164
		7.4.3.4 Beispiel für eine vollständige Statorgeometrie	. 165
		7.4.3.5 Beispiel für eine vollständige Statorgeometrie mit Offset	. 165
		7.4.4 Verwendung von Layern im CAD-Modell	. 166
		7.4.5 Kennwörter und Parameter für Linear Motoren	. 167
		7.4.6 Kennworter and Parameter für Aktuatoren	. 169
		7.4.7 FURKIONSDESCHREIDUNG DAF-IMPOR	174
		7.4.8.1 Freie Elächenelemente	. 174
		7.4.8.2 Eindeutige Punkte	. 174
	7.5	DXF Export	. 175
		7.5.1 Export aus dem jeweiligen Topologiefenster	. 175
		7.5.2 Export über das smartFEM Hauptmenü	. 177
	7.6	CASPOC	. 179
8	Notiz	en	. 181

Abbildungsverzeichnis

Abb. 1: Fenster ,Programme/Dateien durchsuchen' - Speicherort von setup.exe eingeben	. 14
Abb. 2: Installation smartFEM	. 14
Abb. 3: Verzeichnis für Programmdateien	. 15
Abb. 4: Verzeichnis benutzerspezifische Dateien	. 15
Abb. 5: smartFEM Logdatei	. 16
Abb. 6: smartFEM reparieren oder löschen	. 16
Abb. 7: smartFEM starten	. 17
Abb. 8: smartFEM Startbildschirm - Informationen zur installierten smartFEM Version	. 17
Abb. 9: Laden der Lizenzdatei	. 18
Abb. 10: Tools - smartFEM Settings - Einstellung der Verzeichnisse	. 19
Abb. 11: Tools - smartFEM Settings - Speicherung der Modelldaten	. 20
Abb. 12: Tools - smartFEM Settings - Allgemeine Einstellungen	. 21
Abb. 13: Tools - smartFEM Settings - GUI settings	. 22
Abb. 14: Tools - Project Settings	. 23
Abb. 15: Tools - Material Legend Settings	. 23
Abb. 16: Neues Motormodell anlegen	. 24
Abb. 17: Motor-Geometrie	. 24
Abb. 18: FEM-Modells mit minimaler geometrischer Symmetrie von Rotor und Stator	. 25
Abb. 19: FEM-Modell gezoomt	. 25
Abb. 20: Abstandsmessung	. 25
Abb. 21: Rotor - Geometrie und zugehörige Parameter	. 27
Abb. 22: Rotor bearbeiten - Geometrie Parameter	. 28
Abb. 23: Rotor bearbeiten - Darstellung der veränderten Geometrie	. 28
Abb. 24: Rotor bearbeiten - Un-Do und Re-Do	. 29
Abb. 25: Geometrie bearbeiten - User defined Elements	. 29
Abb. 26: Rotor bearbeiten - Magnet außerhalb Rotorgeometrie	. 30
Abb. 27: Basisparameter	. 31
Abb. 28: Knotenketten mit Anzeige des Basisknotenwinkels	. 32
Abb. 29: Knotenketten im Luftspalt	. 33
Abb. 30: Rotor-Geometrie - Darstellung der Knotenketten	. 33
Abb. 31: Rotor-Geometrie - Gruppe "Elements"	. 33
Abb. 32: Rotor-Geometrie - nichtlineare Knotenkette	. 34
Abb. 33: Stator bearbeiten	. 34
Abb. 34: Motorgeometrie speichern und exportieren	. 35
Abb. 35: Motorgeometrie speichern und exportieren	. 35
Abb. 36: Zuweisung der Materialeigenschaften	. 36
Abb. 37: Materialien - Stator mit Wicklungsparameter	. 36
Abb. 38: Materialien - Statoreisen Parameter	. 37
Abb. 39: Materialien - Auswahlliste "Nicht-Lineare" Materialdaten	. 37
Abb. 40: Materialien - Zuweisung verschiedener Materialnummern "MatNo" zu verschiedenen Fläch	nen
innerhalb einer Topologie	. 38
Abb. 41: Materialien - Magnete	. 39

Abb. 42: Materialien - Magnetisierung	39
Abb. 43: Materialien - Magnetisierungstabelle	40
Abb. 44: Materialien - Benutzer definierte Magnete	40
Abb. 45: Materialien - gemessene Magnetisierung	40
Abb. 46: Materialien - Zusatzparameter für gemessene Magnetisierungen	41
Abb. 47: Material Explorer - B(H) und Verlustdaten von Elektroband	42
Abb. 48: Material Explorer - Entmagnetisierungs-Kennlinie	43
Abb. 49: Preprocessing - Aufbau des FEM-Modells mit FEMAG	44
Abb. 50: Preprocessing - Show FEMAG	44
Abb. 51: Preprocessing - Netz und Knotenketten	45
Abb. 52: Preprocessing - Calculate and Mesh Shaft Area	45
Abb. 53: Preprocessing - Mesh and Calculate Shaft Area (2)	46
Abb. 54: Preprocessing - fehlerhafter Flusslinienverlauf	46
Abb. 55: Preprocessing - korrekter Flusslinienverlauf	46
Abb. 56: Field Plots - Field Plots Definition	47
Abb. 57: Field Plots - Magnetische Induktion mit überlagerten Flusslinien	47
Abb. 58: Field Plots - Entmagnetisierung	47
Abb. 59: Field Plots - Tabelle zur parametrischen Definition von Sets	48
Abb. 60: Field Plots - Modelldaten exportieren	49
Abb. 61: Field Plots - Beispiel exportierte Modelldaten	49
Abb. 62: Field Plots - Force in Airgap	50
Abb. 63: Field Plots - Definition von Sets	50
Abb. 64: Field Plots - Save Settings nach Festlegung des Bildinhalts	50
Abb. 65: Field Plots - Darstellung der Plots je Set	51
Abb. 66: Field Plots - Farbige Flusslinien	51
Abb. 67: smartFEM Settings – Farbauswahl und Orientierung von Flusslinien	52
Abb. 68: Field Plots – Copy Sets	52
Abb. 69: Field Plots – Tabelle mit Berechnungsergebnissen	52
Abb. 70: Wicklungseditor - Aufruf über die smartFEM Schaltfläche "Winding …"	53
Abb. 71: Wicklungseditor - Icon-/Textfarben und -größen in smartFEM Settings	53
Abb. 72: Wicklungseditor - Coils Parameters	54
Abb. 73: Wicklungseditor - Coils Parameter - Options	54
Abb. 74: Wicklungseditor - Wicklungsschema "Zwei-Schicht-Bruchlochwicklung" mit Anzeige der Werte für Amplitude Flux Vector, Distibution-, Pitch und Winding-Faktor	55
Abb. 75: "Zwei-Schicht-Bruchlochwicklung Ober-/Unterlage" "Ein-Schicht-Wicklung" "Ringwicklung"	55
Abb. 76: Wicklungseditor - benutzerspezifische Definition des Wicklungsschemas	56
Abb. 77: Wicklungseditor - Speichern bzw. Laden einer Wicklungsdefinition	56
Abb. 78: Winding Editor - Phasendiagramm	57
Abb. 79: Ersatzschaltbild Synchronmotor	58
Abb. 80: Ergebnisparameter als "Overview"-Tabelle	58
Abb. 81: Motor Parameters - Cogging Torque + BEMF	59
Abb. 82: "Apply, Exit" Motor Parameters	60
Abb. 83: Results - Ergebnisse Cogging Torque	61
Abb. 84: Beispiel für Beeinflussung der BEMF durch Schrägung	61

Abb. 85: Results - Expected Values	62
Abb. 86: Motor Parameters - Nominal Torque + Inductance	63
Abb. 87: Stator Coil Exitation - Constant Line Current	67
Abb. 88: Stator Coil Exitation - Sinus Shape Line Current	67
Abb. 89: Stator Coil Exitation - Id-Iq Effective Phase Current	67
Abb. 90: Stator Coil Exitation - Trapaziod Shape Phase Current	67
Abb. 91: Stator Coil Exitation - Trapaziod Shape Line Current	68
Abb. 92: Stator Coil Exitation - User Defined Phase Current	68
Abb. 93: Stator Coil Exitation - Phase Vector Currents Input Table	69
Abb. 94: Phase Vector Currents Input Table - Current Options	69
Abb. 95: "Apply, Exit, Reset Results" Motor Parameters	70
Abb. 96: Ergebnisdarstellung Nominal Torque mit sinusförmigem Strom	71
Abb. 97: Übersicht Calculation Results	71
Abb. 98: Motor Parameter für dynamische Berechnung stationären Betriebszustandes	72
Abb. 99: Verwendung von benutzerspezifischen Phasenspannungen	74
Abb. 100: Voltage Options	74
Abb. 101: Einstellung der Parameter für das Invertermodell	75
Abb. 102: Abbruchbedingungen für dynamische Berechnungen	75
Abb. 103: Dynamische Berechnung Drehmomentverlauf versus Rotorpostion	76
Abb. 104: Grundlagen von Kraftvektoren	77
Abb. 105: Kraftberechnungen mit smartFEM	78
Abb. 106: Beispiel für Ergebnisse einer Kraftberechnung	78
Abb. 107: Beispiel 1 - Kräfteberechnung in	79
Abb. 108: Beispiel 2 - Kräfteberechnung in fünf Segmenten	79
Abb. 109: Postprocessing - Forces and Torque	80
Abb. 110: Postprocessing - Drehmomentdiagramm anzeigen	80
Abb. 111: Postprocessing - Plots von Drehmoment und Harmonischen	80
Abb. 112: Postprocessing - Auswahl zum Kopieren der Ergebnisdaten für das Drehmoment	81
Abb. 113: Motor Parameters - Auswahlfeld "Losses"	82
Abb. 114: Verlustberechnung - Parameter	82
Abb. 115: Loss Calculation - Add Speed Range	83
Abb. 116: Verlustberechnung - Magnets Segmentation	83
Abb. 117: Verlustberechnung - Beispiel Textdatei.pex	83
Abb. 118: Verlustberechnung - Durchführung der Berechnung	84
Abb. 119: Verlustberechnung - Ergebnisse	84
Abb. 120: Loss Calculation - Polynomkoeffizienten	85
Abb. 121: Verlustberechnung - Linearmotoren	85
Abb. 122: Ld/Lg - Erzeugung der Datensätze	86
Abb. 123: Ld/Lg - Ergebnistabelle	86
Abb. 124: Ld/Lg - Diagram Torque vs. Theta mit is=constant	87
Abb. 125: Ld/Lg - Phasor Diagram	87
Abb. 126: Ld/Lg - Erzeugung einer Ergebnisdatei für CASPOC	88
Abb. 127: Simulationsmodell mit einem Magnet	89
Abb. 128: Änderung der Materialeigenschaften einzelner Flächenelements	

Abb. 129: Grafische Darstellung und Auswertung der Ergebnisse	90
Abb. 130: Öffnen eines gespeicherten Simulationsmodells	92
Abb. 131: Add-ons - Aufrufmenü	93
Abb. 132: Motor Diagramme - Aufruf	94
Abb. 133: Motor Diagramme - Strom-Theta-Matrix und Ergebniswerte	94
Abb. 134: Motor Diagramme - Parameter für die Berechnung der Grafikdaten	95
Abb. 135: Motor Diagramme - Umrechnung UsDC <> UsLL_rms	96
Abb. 136: Motor Diagramme - Parameter die Erzeugung der Ld/Lq Sets	96
Abb. 137: Motor Diagramme - Loss Sets	97
Abb. 138: Motor Diagramme - Beispiel für Ordnerinhalt mit "Basis"- und "Verlust"-Modellen	97
Abb. 139: Motor Diagramme - smartFEM MultiRun mit Übersicht zum aktuellen Bearbeitungsstand	für פפ
Abb. 140: Motor Diagramme - Diagrammarten	00
Abb. 141: Motor Diagramme - Drebmoment vs. Drebzahl	99 00
Abb. 141: Motor Diagramme - Drehmoment vs. Drehzahl mit Luftenalt- und abgogebenem	55
Drehmoment	. 100
Abb. 143: Motor Diagramme - Beispiel für Hervorheben eines einzelnen Graphen	. 100
Abb. 144: Motor Diagramme - Beispiel für "Undock Graph"	. 101
Abb. 145: Motor Diagramme - Beispiel für "Undock Graph"	. 101
Abb. 146: Motor Diagramme - Minimalwerte der Spannung als Funktion des Stromes	. 102
Abb. 147: Motor Diagramme - Wirkungsgrad bei minimalem Strom	. 102
Abb. 148: Motor-Diagramme - maximaler Wirkungsgrad	. 102
Abb. 149: Motor Diagramme - Diagramwerte an der Mausposition	. 103
Abb. 150: Motor Diagramme - Einstellungen für Konturplots	. 103
Abb. 151: MotorDiagrams - Copy Torque Speed Feed Loop Table	. 104
Abb. 152: MotorDiagrams - Torque Speed Feed Loop Table	. 104
Abb. 153: MotorDiagrams - Plot2D "Efficiency Torque Speed Loop Table"	. 105
Abb. 154: Motor Diagramme - Parametereingabe für "Einfache Motordiagramme"	. 106
Abb. 155: Motor Diagramme - Beispiel "Einfaches" Motordiagramm Us vs. Is mit Speed = constan	t 106
Abb. 156: Motor Control - Eingabe der Berechnungsparameter	. 107
Abb. 157: Motor Control - Diagrammarten	. 107
Abb. 158: Motor Control - Ergebnisspeicher	. 107
Abb. 159: Motor Control - Diagramm "Flux Linkage Magnet vs. Is"	. 108
Abb. 160: Motor Control - Konturplot "Torque vs. Theta vs. Is"	. 108
Abb. 161: Motor Control - Ergebnisdaten	. 108
Abb. 162: Contur Plot - tabellarische Textdatei	. 109
Abb. 163: ContourPlot - Beispiel "Wirkungsgrad vs. Strom vs. Geschwindigkeit"	. 109
Abb. 164: AC-Losses - Nutmodell und Wicklungen	. 110
Abb. 165: AC-Losses - Source of Parameter	. 110
Abb. 166: AC-Losses - smartFEM Modell	. 110
Abb. 167: AC-Losses - Geometry Parameter "smartFEM Model"	. 111
Abb. 168: AC-Losses - Geometry Parameter "Input Data"	. 111
Abb. 169: AC-Losses - Material Parameter "smartFEM Model"	. 111
Abb. 170: AC-Losses - Material Parameter "Input Data"	. 112
Abb. 171: AC-Losses - Motor Parameter	. 112

Abb. 172: AC-Losses - Ergebnisse	. 112
Abb. 173: Parametervariationen - Beispiel Batch-Datei	. 116
Abb. 174: Parametervariationen - Beispiel Batch-Log-Datei	. 116
Abb. 175: Simulation im Batch: Exportierte Ergebnisdatei	. 117
Abb. 176: Parallel Computing - Zuweisung von Prozessorkernen	. 120
Abb. 177: PM-Magnetization - Beispiel Magnetisierungseinrichtung (Spule und Rotor)	. 121
Abb. 178: PM-Magnetization - Initialisierung Abb. 179: PM-Magnetization - Magnet Material	. 121
Abb. 180: PM-Magnetization - Neukurve eines Neodym Eisen Bor Materials	. 122
Abb. 181: PM-Magnetization - Motor Parameters	. 122
Abb. 182: PM-Magnetization - Start der Simulation mit "Run Magnetization"	. 123
Abb. 183: PM-Magnetization - Induktionsverteilung	. 123
Abb. 184: PM-Magnetization - Remanence im Ringmagnet (gezoomt)	. 123
Abb. 185: PM-Magnetization - Laden eines vormagnetisierten Rotormodells	. 124
Abb. 186: PM-Magnetisation - Modell zur Simulation der Induktion an der Rotoroberfläche	. 124
Abb. 187: PM-Magnetization - Plot der Induktionsverteilung	. 125
Abb. 188: PM-Magnetization - Luftspaltinduktion über Post-Processing berechnen	. 125
Abb. 189: PM-Magnetization - Luftspaltinduktion in Tabellenkalkulation ausgewertet	. 126
Abb. 190: PM-Magnetization - Motormodell mit vormagnetisiertem Rotor	. 126
Abb. 191: PM DC Motor - Initialisierung	. 127
Abb. 192: PM DC Motor - Beispiel eines Geometriemodells	. 127
Abb. 193: PM DC Motor - Wickelschema und Phasendiagramme	. 128
Abb. 194: PM DC Motor - Kommutierungssequenz	. 128
Abb. 195: PM DC Bürstenmotor - Bürstenposition	. 129
Abb. 196: Synchronous Motor - vier Pole	. 130
Abb. 197: Synchronous Motor - Initialisierung	. 130
Abb. 198: Synchronous Motor - Material Settings	. 130
Abb. 199: Synchonous Motor - Wicklungen	. 130
Abb. 200: Synchronous Motor - Rotor Coil Excitation	. 131
Abb. 201: Synchronous Motor - Calculation Types	. 131
Abb. 202: Synchronous Motor - Coils Excitation	. 131
Abb. 203: Synchronous Motor - Equivalent Circuit	. 131
Abb. 204: Synchronous Motor - BEMF Equivalent	. 131
Abb. 205: Synchronous Motor - Ergebnisse der "Nominal Torque Calculation"	. 132
Abb. 206: Synchronous Motor - Rotor Coil Excitation in "Plots"	. 133
Abb. 207: Synchronous Motor - Excitation Sources	. 133
Abb. 208: Synchronous Motor - Flussdichten und Feldlinien	. 133
Abb. 209: SR Motor - Initialisierung	. 134
Abb. 210: SR Motor - Beispiel eines Geometriemodells	. 134
Abb. 211: SR-Motor - User Defined Phase Current	. 135
Abb. 212: SR-Motor - Bestimmung der Phasenlagen	. 135
Abb. 213: SR-Motor - Results	. 136
Abb. 214: Synchronous Reluctance Motor - Initialisierung	. 137
Abb. 215: Synchronous Reluctance Motor - 4-polig	. 137
Abb. 216: Synchronous Reluctance Motor - Beispiel Simulationsergebnisse	138

Abb. 217: Synchronous Reluctance PM-Assisted Motor - Rotortopologie	. 138
Abb. 218: Synchronous Reluctance Motor PM-Assisted - Beispiel Simulationsergebnisse	. 139
Abb. 219: Universal Motor - Initialisierung	. 140
Abb. 220: 2-poliger Universal Motor mit 24 Rotornuten	. 140
Abb. 221: Universal Motor - Plot der Induktion und Feldlinien	. 141
Abb. 222: Universal Motor - Motor Parameters	. 141
Abb. 223: Universal Motor - Lage der Wicklung 13	. 142
Abb. 224: Phasenlagen der Wicklungen	. 142
Abb. 225: Universal Motor - Transformer Voltage per Rotor Phase (Rotor Current = 0A)	. 143
Abb. 226: Switching Torque - Statorströme	. 143
Abb. 227: Switching Torque - Rotorstöme	. 143
Abb. 228: Switching Torque – Drehmoment	144
Abb. 229: Motor Torque - Statorströme	144
Abb. 230: Motor Torque - Rotorströme	144
Abb. 231: Motor Torque - Drehmoment des AC-Motors	145
Abb. 232: Universal Motor - Positionierung der Bürsten	145
Abb. 233: PM-Linear Motor – Initialisierung	146
Abb. 234: PM-Linear Motor - Beispiel eines Geometriemodells	146
Abb. 235: PM - Linear Motor - Darstellung der Kräfte und Luftspaltinduktion	147
Abb. 236: PM – Linear Motor - periodische Modelle H3LM2 und H3LM3	147
Abb. 237: PM – Linear Motor - LM021c, Umschaltung periodisch / nicht periodisch	148
Abb. 238: PM – Linear Motor - Berechnung der Verluste	148
Abb. 239: Aktuator - CAD Zeichnung	149
Abb. 240: Actuator - smartFEM Modell nach DXF-Import	149
Abb. 241: Aktuator - ForcePath und MoveVector	150
Abb. 242: Aktuator - ForcePath, MoveVektor und Airgap	150
Abb. 243: Aktuator - Verbindung des beweglichen mit dem festen Geometrieteil	151
Abb. 244: Aktuator - Darstellung des "ForcePath" in smartFEM	151
Abb. 245: Aktuator - Darstellung des "MoveVector" mit Verschiebung des Kolbens	151
Abb. 246: Aktuator - Simulation und Ergebnisse	152
Abb. 247: Export von Ergebnisdaten als Text - Cogging Torque	153
Abb. 248: Export von Ergebnisdaten als Text - Model Data	153
Abb. 249: Projektbericht: Auswahl der Diagramme	154
Abb. 250: Projektbericht - Auswahl von Designparametern und Ergebnissen als Texte	154
Abb. 251: Projektbericht mit Microsoft® Word geöffnet	155
Abb. 252: FEMAG aus smartFEM heraus starten	156
Abb. 253: DXF-Import - Beispiel für den Import einer Statorgeometrie	158
Abb. 254: DXF-Import - Beispiel Statorgeometrie	163
Abb. 255: DXF-Import - Beispiel für eine Rotorgeometrie	164
Abb. 256: DXF-Import - SPLINES	164
Abb. 257: DXF-Import - vollständige Geometrie	165
Abb. 258: DXF-Import - Exentrizität zwischen Rotor und Stator	165
Abb. 259: CAD Import - Verwendung von Lavern	166
Abb. 260: DXF-Import Linear Motor - Basisparameter	. 168

Abb. 261: DXF-Import Linear Motor - Basisparameter "AirGapThickness", "AirGapIncrement" 168
Abb. 262: DXF-Import Aktuator - Basisparameter
Abb. 263: DXF-Import Aktuator - CAD-Zeichnung mit ForcePath und MoveVector
Abb. 264: DXF-Import Aktuiator - Force Path und MoveVektor in smartFEM (Geometry Plot) 170
Abb. 265: DXF-Import Aktuator - ForcePath und MoveVector in smartFEM (Material Plot) 170
Abb. 266: DXF-Import Aktuator - Richtung des "MoveVector" ≠ 0° 171
Abb. 267: DXF-Import Aktuator - Rotation der Geometrie mit "MoveVector" in Richtung der x-Achse
Abb. 268: DXF-Import Aktuator - Kräfte in x- und y-Richtung bei unsymmetrischen Geometrien 171
Abb. 269: DXF-Import - Selektion der DXF- bzw.CSV-Datei
Abb. 270: DXF-Import - Beispiel importierte Stator-Geometrie
Abb. 271: DXF-Import - Informationen zu Geometrieelementen 173
Abb. 272: DXF-Import - Selektion eines Geometrieelementes
Abb. 273: DXF-Import - freie Flächenelemente 174
Abb. 274: DXF-Import - Minimum Distance of Points 174
Abb. 275: DXF Export - Topologie
Abb. 276: DXF Export - Darstellung in einem CAD System 176
Abb. 277: DXF-Export - smartFEM Layer im 2D-Modell des CAD-Systems
Abb. 278: DXF Export - Beispiel Stator Geometrie
Abb. 279: DXF Export - Selektion der Funktion 177
Abb. 280: DXF Export - Beispiel Kontur des Stator Blechpaketes
Abb. 281: DXF-Export - gesamtes Maschinenmodell
Abb. 282: DXF-Export: Materialkonturen
Abb. 283: CASPOC - Berechnungsparameter
Abb. 284: CASPOC - Speicherung der Ergebnisdaten
Abb. 285: CASPOC - Beispiel XML-Datei

Einleitung

smartFEM dient zur Simulation von elektrischen Maschinen mit alphanumerischer bzw. grafischer Darstellung und Dokumentation der berechneten Kenngrößen. Dabei nutzt smartFEM für FEM-Simulationen und Analysen das FE-Programm FEMAG von Prof. Dr.-Ing. Konrad Reichert. Es werden nummerische Verfahren zur Lösung von elektromagnetischen Feldproblemen mittels FEM und analytischen Methoden verwendet.

Mit smartFEM können folgende Maschinenmodelle (Motoren und Generatoren) simuliert werden:

- Permanent magnetisch erregt, bürstenlos, Gleichstrom (Innen-/Außenläufer) (BLDC)
- Permanent magnetisch erregt, Bürsten-Gleichstrom (Innenläufer)
- Permanent magnetisch erregt, linear
- Switched Reluctance
- Synchronous Reluctance
- Universal
- Magnetisierung von permanent magnetisch erregten Innenläuferrotoren

smartFEM wurde mit Microsoft[®] Visual Studio[®] .NET entwickelt und läuft auf Arbeitsplatzcomputern mit Microsoft[®] Windows Betriebssystemen:

- XP Professional Edition SP 2
- VistaTM Professional
- Windows 7,8, 10 (32 und 64 Bit)

Lieferumfang:

1 USB-Stick als Dongle mit folgenden gespeicherten Dateien:

- xxx.license Lizenz, muss in smartFEM License Control geladen werden
- setup.exe Anwendung zum manuellen Start der Installation.
- smartFEM.msi Installationspaket (inkl. der zu der smartFEM Version passenden FEMAG Version)
- UserGuide_de.pdf Benutzer-Anleitung
- Topologies_de.pdf Beschreibung der Rotor und Stator Topologien

1 Installation

1.1 .NET Framework

Voraussetzung für die Installation von smartFEM ist das Vorhandensein einer Installation von Microsoft[®] .NET Framework 4.0. smartFEM überprüft das und gibt eine entsprechende Meldung, wenn dies nicht der Fall ist. Eine Version kann aus dem Internet vom Microsoft[®] Download Center herunter geladen und installiert werden.

1.2 smartFEM

Nach Einlegen der gelieferten CD in das CD-Laufwerk des Computers wird automatisch der Installationsprozess gestartet. Sofern dies nicht geschieht, muss die Installation manuell gestartet werden. Dazu wählen Sie aus dem Windows-Start-Menü die Schaltflächen "*Start*" → "*Ausführen*" und geben anschließend in das aufgeblendete Eingabefeld den CD-Laufwerksbuchstaben gefolgt von der Zeichenfolge "\:setup.exe" ein. Bei Lieferung per E-Mail geben Sie den Speicherort der entkomprimierten Datei "setup.exe" ein

Abb. 1: Fenster ,Programme/Dateien durchsuchen' - Speicherort von setup.exe eingeben

Nach Abschluss der Eingabe mit "*Return"* wird das Installationsprogramm gestartet und der Benutzer zu allen erforderlichen Eingaben aufgefordert.

🐻 SmartFEM	🖓 SmartFEM
Welcome to the SmartFEM Setup Wizard	Select Installation Folder
The installer will guide you through the steps required to install SmartFEM on your computer.	The installer will install SmartFEM to the following folder.
	To install in this folder, click "Next". To install to a different folder, enter it below or click "Browse".
	Eolder: D:\smartFEM\
	Disk Cost
WARNING: This computer program is protected by copyright law and international treaties. Unauthorized duplication or distribution of this program, or any portion of it, may result in severe civil or criminal penalties, and will be prosecuted to the maximum extent possible under the law.	Install SmartFEM for yourself, or for anyone who uses this computer:
	⊙ Just <u>m</u> e
Cancel Cancel Next > 1	Cancel Cancel Next >

Abb. 2: Installation smartFEM

				-		- 🗆 🗙
🕞 🕘 🗸 🕌 🕨 Computer 🕨 OS (C:) 🕨 Benutzer 🕨 elmoCAD) sn	martFEM 🕨		👻 🍫 Suchen		٩
Datei Bearbeiten Ansicht Extras ?						
🍓 Organisieren 👻 🏢 Ansichten 💌 🙆 Brennen						0
Linkfavoriten	[🛯 Name 🏠	Тур	Größe	Änderungsdatum	
(Leer)		🎍 Batch 🍶 ElTopology 퉲 Femag	Dateiordner Dateiordner Dateiordner		02.02.2011 14:57 19.01.2011 08:48 03.03.2011 13:36	
Ordner	~	Material Explorer	Dateiordner		03.02.2011 09:20	
 Desktop Computer OS (C:) Benutzer smartFEM 	* III	Materials Topology AddOnLdll BaseGeo.dll Comm.dll DynamicI.dll SmartFEM.exe SmartFEM.exe.config	Dateiordner Dateiordner DLL-Datei DLL-Datei DLL-Datei DLL-Datei Anwendung CONFIG-Datei	36 KB 28 KB 48 KB 32 KB 2.517 KB 5 KB	16.02.2011 15:31 21.02.2011 14:04 21.10.2010 15:32 26.01.2011 15:18 31.10.2007 04:01 17.08.2007 10:45 17.02.2011 03:58 26.01.2011 05:08	
	-					

Bei erfolgreicher Installation wurden folgende Verzeichnisse und Dateien angelegt:

Abb. 3: Verzeichnis für Programmdateien

Die Verzeichnisse enthalten:

∖ smartFEM	das Programm smartFEM.exe, zugehörige dll's und Benutzerhandbücher (*.pdf).
$\dots \$ smartFEM $\$ Batch	Templates für die Durchführung von Berechnungen per Batch.
$\dots \$ smartFEM $\$ EITopology	Topologien für Leistungselektronik zur Dynamiksimulation.
$\dots \$ smartFEM $\$ Material Explorer	Programm und Konfigurationsdatei zur Beschreibung und Pflege von Materialdaten "Material Explorer".
$\dots \$ smartFEM $\$ Materials	Materialdateien
\ smartFEM \ Femag	das Programm wfemag.exe 1)
\ smartFEM \ Topology	dll's für Rotor- und Stator-Topologien.

¹⁾ Hinweis: Bei Installation unter Windows 7 muss das Verzeichnis mit wfemag.exe für schreibende Zugriffe parametriert sein, da wfemag.exe dort temporäre Dateien anlegt. Ggfs. ist dieses Verzeichnis in einen benutzerspezifischen Bereich zu kopieren. smartFEM kann auch auf einem beliebigen anderen Laufwerk und/oder Verzeichnis installiert werden, zu dem Benutzer Zugangsrechte besitzen.

Die benutzerspezifische smartFEM Konfigurationsdatei "user.config" wird im aktuellen Benutzerverzeichnis gespeichert.

Datei Bearbeiten Ansicht Extras ?					
🧤 Organisieren 👻 🏢 Ansichten 👻 😍 Brennen					?
Linkfavoriten		Name	Änderungsdatum	Тур	Größe
(Leer)		iser.config	28.02.2011 11:44	CONFIG-Datei	6
Ordner	~				
E Desktop					
I Computer					
🚢 OS (C:)					
Benutzer					
4dd885e3-ba6c-437f-bd79-6aad5e0ecb2a					
🚺 AppData					
Julia Local	=				
SmartFEM and Strengthered Initial Science Operations (Strengthered Strengthered	an also stilling				
1.0.0.0	cadopennijz				
2.0.0.0					
Topology_Maker.exe_Url_dfpzm1vxsycxjdr3mbtn3	gy41sqv2uvl				
1.0.0.0					

Abb. 4: Verzeichnis benutzerspezifische Dateien

Bei jedem Start von smartFEM wird im Verzeichnis *"C:\Users\User\AppData\Local\Temp\"* eine Log-Datei mit dem Namen *"smartFEMLogFile.txt"* angelegt. Hier werden Informationen bei auftretenden Problemen gespeichert.

Desktop + Computer + System (C:) + Benutzer + gh + AppData + Local + Temp + 💦 는				
⊿ j Computer	*	Name	Geändert	
A System (C:) SRecycle Bin		sszirkqt	31.03.2014 09:36	
Autodesk		ssdkdlqmdlrkqt	31.03.2014 09:36	
Benutzer		SPSF13A.tmp	14.04.2012 00:00	
All Users		smartFEMLogFile.txt	25.09.2014 17:47	
Default		setC342.tmp	02.12.2002 16:33	
Default User	=	setBB18.tmp	02.12.2002 16:33	
4 🔐 gh		set7458.tmp	02.12.2002 16:33	

Abb. 5: smartFEM Logdatei

Um smartFEM vom Computer zu löschen oder zu reparieren kann setup.exe gestartet und die entsprechende Auswahl getroffen werden.

Es werden nur die Dateien gelöscht, die bei der Installation von smartFEM angelegt wurden.

Abb. 6: smartFEM reparieren oder löschen

Berechtigungen unter Windows 10 und 11

Wenn *smartFEM* im Verzeichnis *"C:\Programme(x86)\..."* installiert wird, dann muss *smartFEM* ein Benutzer mit Namen "Jeder" mit den Berechtigungen "Vollzugriff" zugewiesen werden. Anderenfalls verhindert Windows u.U. die korrekte Verwendung von *smartFEM*:

vigemein Freigabe Sichemen vorgangerversionen Anpassen	Berechtigungen f ür "smartFEM"
Objektname: C:\Program Files (x86)\smartFEM	Sicherheit
Gruppen- oder Benutzemamen:	Objektname: C:\Program Files (x86)\smartFEM
A A	Gruppen- oder Benutzemamen:
ALLE EINGESCHRÄnkTEN ANWENDUNGSPAKETE ERSTELLERSESITZER C	Aute Anwendungspakete Aute Anwendungspakete Aute Eingeschränkten Anwendungspakete
Kicken Sie auf "Bearbeiten", um die Berechtigungen zu ändem.	RSTELLER-BESITZER
Vollzugriff	Hinzufügen Entfemen
Ändem	Berechtigungen für "Jeder" Zulassen Verweigen
Ordnerinhalt anzeigen	Vollzugriff
Lesen	Åndem 🗹 🗌
••••••	Lesen, Ausführen
Schreiben 🗸 🗸	Ordnerinhalt anzeigen
Schreiben V V Klicken Sie auf "Erweitert", um spezielle Berechtigungen anzuzeigen. Erweitert	

2 Start und Einstellungen

2.1 Start

smartFEM wird über die Schaltflächen des Windows Menü *"Start"→"Alle Programme"→"smartFEM"→ "smartFEM"* aufgerufen.

Abb. 7: smartFEM starten

Es erscheint der Startbildschirm. Über die Schaltflächen *"Help"→"About…"* werden verschiedene Informationen über die installierte smartFEM Version angezeigt.

Abb. 8: smartFEM Startbildschirm - Informationen zur installierten smartFEM Version

2.2 Registrierung und Lizenzinformation

Nach der Installation steht smartFEM dem Benutzer 30 Tage lang uneingeschränkt zur Verfügung. Anschließend können keine Datenspeicherungsfunktionen mehr ausgeführt werden.

Kunden, die eine darüber hinaus gehende zeitlich beschränkte oder unbeschränkte Software-Nutzungslizenz erworben haben, können diese alternativ wie folgt verwenden:

a) Bindung der Lizenz an einen USB-Stick. Damit kann smartFEM auf mehreren Rechnern installiert und nach Einstecken des USB-Sticks auf dem jeweiligen Rechner genutzt werden.

Die USB-Sticks werden von elmoCAD standardmäßig zusammen mit der smartFEM Software und Lizenzdatei ausgeliefert.

- b) Bindung der Lizenz an die MAC-Adressen von Computer, Festplatte oder Netzwerkdomäne gemäß Absprache:
 - Erzeugung einer Lizenzdatei über die Kommandos "*License Control*" →"*Write License Data*"
 - Versand der erzeugten Lizenzdatei per E-Mail an info@elmocad.de
 - Einlesen der aktivierten und von elmoCAD aktivierten und per E-Mail zurückerhaltenen Lizenzdatei über die Kommandos "*Help*" →"*About*" →"*License Control*" →"*Load*"

Abb. 9: Laden der Lizenzdatei

2.3 Einstellungen

2.3.1 smartFEM

Einstellungen für Programm- und Datenverzeichnisse, etc. werden über die Schaltflächen *"Tools"→"… Settings"* angezeigt und können angepasst werden.

2.3.1.1 Folders: Einstellungen der Verzeichnisse

- Geometry Topology Folder dll-Dateien für Rotor- und Statortopologien
- Material Files Folder Dateien für Materialdaten
- FEMAG Exe for smartFEM Die mit smartFEM installierte FEMAG Version, mit der alle von smartFEM durchgeführten Simulationen gerechnet werden.
 - User FEMAG Exe File Eine vom Benutzer verwendete FEMAG Version für zusätzliche benutzerdefinierte Berechnungen. Dies kann auch eine andere Version als die von smartFEM verwendete sein.
- Default Working Directory Aktuelles Arbeitsverzeichnis, in dem die Design Daten und Berechnungsergebnisse gespeichert werden.
- Electronic Topology Folder dll-Dateien für Elektronikschaltungstopologien

smart	TEM Co	orel	N 10 48				
File	View	Tool	s Windows	Help			
i 🗋 📂		٠	SMARTFEM Se	ettings			
		2	Project Setting	IS			
		:=	Material Leger	nd Settings			
		-	_				
			😨 smartFEN	A Settings			×
			Folders Saving		Folders		
			GUI		Geometry Topology Folder:	D:\elmoCAD\Entwicklung\Topology	Browse
						Number Of Stator Topologies : 22	
					Material Files Folder:	D:\elmoCAD\smartFEM_Folders\Ma	Browse
					FEMAG Exe for SmartFEM: Selected - Ver.7.9.34.10	D:\elmoCAD\FEMAG\wfemag_7.9.3	Browse
					User FEMAG Exe File:	D:\elmoCAD\FEMAG\wfemag_7.9.*	Browse
					Default Working Directory:	D:\elmoCAD\Temp	Browse
					Electronics Topology Folder	: D:\elmoCAD\smartFEM_Folders\EIT	Browse
			s	ave			

Abb. 10: Tools - smartFEM Settings - Einstellung der Verzeichnisse

2.3.1.2 Saving: Einstellungen für die Speicherung von Modellen

😵 smartFEM Settings	
Folders Saving	Saving
General GUI	✓ Automatic Adding Extension to File End
	Dynamic Calculation - Save Only Last Period
	Auto Saving After:
	Pre-Processing
	Cogging and BEMF Calculation
	✓ Nominal Torque Calculation
	Dynamic Calculation
	Dynamic Calculation - Save Only Last Period Auto Saving After: Pre-Processing Cogging and BEMF Calculation Nominal Torque Calculation Dynamic Calculation

Abb. 11: Tools - smartFEM Settings - Speicherung der Modelldaten

Alle Modelldaten inkl. Berechnungsergebnisse werden in einer Datei *.mot im XML-Format gespeichert. Bei Auswahl von:

- "Automatic Adding Extension to File End"
 Bei jedem Speichervorgang wird ein "_" und eine laufend aufsteigende Nummer an den Dateinamen angehängt, z.B. dateiname_1.mot
- "Dynamic Calculation Save Only Last Period"
 Es werden nur die Ergebnisdaten entsprechend der letzten BEMF Periode bei den dynamischen Berechnungen gespeichert.
- "Auto Saving After"

Automatische Speicherung der Modelldaten nach jedem ausgewählten Berechnungsvorgang:

- Pre-Processing
- Cogging and BEMF Calculation
- Nominal Torque and Inductance Calculation
- Dynamic Calculation

2.3.1.3 General: Allgemeine Einstellungen

SmartFEM Settings	×
Folders	General
General	Topology Window
	Geo Accuracy: 0.01
	Motor Parameters Window
	VIII Unlock Min. Rotation Step
	FEMAG Process Detection: 90 📩 s
	Generate Complete Motor Model
	Show FEMAG Calculation Window

Abb. 12: Tools - smartFEM Settings - Allgemeine Einstellungen

Topologie Window:

Auswahl der Aktion für die "Return-Taste":

- "Geo Accuracy"

Alle Punkte von Zeichnungsobjekten wie Linie, Kreisbogen, etc., die innerhalb eines Kreises mit dem angegebenen Durchmesser liegen, werden als ein Punkt behandelt.

Motor Parameter Window:

- Freigabe für die Eingabe eines benutzerdefinierten "Min. Rotation Step" im Fenster "Motor Parameters".

FEMAG Process Detection:

Eingabe des Überwachungszeitraumes für einen laufenden FEMAG Prozess.
 Wenn innerhalb dieser Zeit FEMAG keine CPU-Zeit verbraucht, wird angenommen, dass die von FEMAG durchzuführenden Berechnungen abgeschlossen sind und Ergebnisdateien gespeichert wurden oder das ein FEMAG Fehler aufgetreten ist und keine Ergebnisse vorliegen. In diesem Fall muss die Fehlerursache beseitigt und die Berechnung neu gestartet werden.

Generate Complete Motor Model

 Hier kann angegebenen werden ob im smartFEM Grafikfenster das vollständige Motormodell angezeigt werden kann. Dabei kann der Rotor dann in verschiedene Positionen gedreht werden. Es wird mehr Zeit für die Generierung der Geometrie benötigt.

Show FEMAG Calculation Window

 Hier kann angegeben werden, ob die FEMAG Fenster bei allen FEM-Berechnungen angezeigt werden oder nicht. Die Anzeige kann auch mit rechtem Mausklick auf die Schaltfläche bei den jeweiligen Berechnungen anbzw. abgeschaltet werden.

Preprocessing		
	~	Show FEMAG
		Stop FEMAG On Error
		Only Meshing
Plots		PreProcessing+Calculation

Bei der FEMAG Version 7.9.34.10 werden generell keine Fenster angezeigt.

🚱 smartFEM Settings	
Folders Saving	GUI
General	Topology Window C Press Enter = Apply Changes and Exit Image: Press Enter = Apply Single Parameter Only Vertical Spacing: 25
	Flux Lines Colors Clockwise Orientation Color Red CounterClockwise Orientation Color Blue
	Winding Coil Icon
	Color Text and Icon Size 8
	Drawing Parameters Open Geometry Thickness 6
	Intersecting Geometry Thickness 3
Save	Dimension Thickness 2

2.3.1.4 GUI: setting for the graphical user interface

Abb. 13: Tools - smartFEM Settings - GUI settings

Topology Window:

Auswahl der Aktion bei Betätigen des "Return" Taste:

- "Apply Changes and Exit"
 Alle Änderungen übernehmen und die Topologie verlassen.
- "Apply Single Parameter Only"
 Den aktuellen Parameterwert des Parameterfeldes übernehmen, in dem sich der Cursor befindet. Der Cursor verbleibt in dem Parameterfeld.

Flux Lines Colors:

- Benutzerspezifische Definition der Farben von Flusslinien in "Plots". Die Voreinstellung ist schwarze Farbe.

Winding Coils Icon:

- Benutzerspezifische Definition der Farbe und Größe von Icons und Texte im Grafikfenster *"Windings"*.

Drawing Parameters:

- Benutzerspezifische Definition der Liniendicke von "Open Geometry", "Intersecting Geometry" und "Dimension" Linien, Kreisbögen und Kurvenzügen..

2.3.2 Projekt

Mit den "*Project Settings*" können zu einem Motordesign Projektinformationen wie z.B. Projektnummer, Projektname, etc. hinzugefügt werden. Sie werden u. a. in dem von smartFEM generierten Projektbericht angezeigt.

le View Tools W	indows Help		Abb. 14: Tools - Project Se
😝 🔲 🏶 SMAR	TFEM Settings		
Projec	t Settings		
E Mater	ial Legend Settings		
😵 Project Settings			
Project Number:	P-06-1234		
Project Name:	Pumpenantrieb 6s4p		
Customer:			
Date of Design:	Donnerstag, 21. Dezember 2006	<u> </u>	
Designer:	D-TUP-B01\gh		
Comment:	1		
SmartFEM Version:	Alpha 0.0.0.42		
FEMAG Version:			
Apply	Exit Sa	ve As efault	

2.3.3 Material Legende

Mit den *"Material Legend Settings*" können die Farben und Bezeichnungen projektspezifisch für die im aktuellen Motordesign verwendeten Flächen eingestellt werden.

Abb. 15: Tools - Material Legend Settings

3 Entwickeln mit smartFEM

3.1 Motorgeometrie

Nach dem Start von smartFEM und Auswahl des Menüs *"File→New"* kann zwischen den Motortypen gewählt werden. Es werden nur die Motortypen angezeigt, für die Rotorund Stator-Topologien im Topologie-Verzeichnis gespeichert sind.

Abb. 16: Neues Motormodell anlegen

Nach Betätigung der Schaltfläche "Apply" wird auf Basis der voreingestellten Parameter für Rotor- und Statorgeometrie ein Motormodell neu angelegt und die Motorgeometrie grafisch für eine BEMF Periode dargestellt.

Abb. 17: Motor-Geometrie

Entsprechend der Auswahl im unteren Bereich des Geometriefensters werden weitere Ansichten der Geometrie mit verschiedenem Informationsgehalt dargestellt, z.B.:

Abb. 18: FEM-Modells mit minimaler geometrischer Symmetrie von Rotor und Stator

Abb. 19: FEM-Modell gezoomt

In allen Darstellungen kann nach Klick mit der linken Maustaste in ein Bereich anschließend durch Betätigung des Scrollrad beliebig tief gezoomt werden.

Abb. 20: Abstandsmessung

Nach Auswahl der Schaltfläche "Measure Distance Between Points" können Abstandsmessungen zwischen zwei mit der Maus angeklickten Positionen durchgeführt werden.

3.1.1 Entwicklungsschritte

Die Entwicklung des Simulationsmodells bis zur Durchführung der ersten Simulation bzw. Berechnung erfolgt am Besten in folgenden Schritten:

- Definition der Rotorgeometrie
- Definition der Statorgeometrie Bei Außen- bzw. Innenläufermotoren wird der Innen- bzw. Außendurchmesser des Stators automatisch auf den Außen- bzw. Innendurchmesser des Rotors angepasst
- Auswahl der Materialien
- Eingabe des Wickelschemas und der Wicklungsparameter. Auf Basis der gewählten Pol-/Nut-Kombination von Rotor und Stator wird automatisch ein Wickelschema mit maximaler BEMF vorgeschlagen.
- Festlegung der Motor- und Berechnungsparameter

3.1.2 Rotor

Nach Anwahl der Schaltfläche "*Rotor"* wird die Geometrie der gewählten Rotortopologie im Grafikfenster gezeichnet und in einem Popup-Fenster die zugehörigen Parameter in drei Gruppen "*Geometry"*, "*Basic"* und "*Elements"* angezeigt.

Sobald der Cursor in ein Parameterfelder mittels der Maus- oder "Tab"-Taste positioniert wird, werden parameterspezifische Bemaßungspfeile in der Grafik angezeigt.

Abb. 21: Rotor - Geometrie und zugehörige Parameter

Nach Auswahl einer Topologie wird die Geometrie unmittelbar in dem Grafikfenster dargestellt und die zugehörigen alphanumerischen Parameter in dem Textfenster mit drei tabellarischen Gruppen (Reiter):

-	"Geometry"	diese Parameter definieren die Geometrie auf Basis von kartesischen
		oder polaren Koordinaten von Punkten, die über Linien, Kreisbögen
		und Kurvenzüge miteinander verbunden sind.

- "Basic" diese beschreiben allgemeine zur Geometrie gehörende Parameter.
- "Elements" diese Parameter beschreiben Eigenschaften von Linien, Kreisbögen, Kurvenzügen, Flächenelementen und Punkten. Verschiedene Parameter können z.B. für die Parametrisierung von Knotenketten editiert werden.

Die Geometrie kann im Grafikfenster dargestellt werden in Form von:

- gezeichneten Linien, Kreisbögen und Kurvenzügen
- farbige Flächenelemente entsprechend den Materialien
- Knotenketten

3.1.2.1 Geometrieparameter

In der Parametergruppe "*Geometry*" werden die Geometrie beschreibenden Parameter angezeigt. Sobald der Cursor in ein Parameterfeld mit der Maus bzw. Tabulator-Taste positioniert wird, werden parameterspezifische Hilfslinien und -texte in der Grafik eingeblendet.

Abb. 22: Rotor bearbeiten - Geometrie Parameter

Jede Eingabe eines neuen Wertes (z.B. Magnetbreite) führt zu einer Neuberechnung der Geometrie, die unmittelbar im Grafikfenster neu gezeichnet wird. Parameterfelder mit grüner Schrift enthalten berechnete Parameter, die der Information dienen und nicht verändert werden können.

Abb. 23: Rotor bearbeiten - Darstellung der veränderten Geometrie

Parameter, die nach Aufruf der Topologie verändert wurden, werden erst durch Betätigung der Schaltfläche "*Apply*" endgültig übernommen und gespeichert. Beim Verlassen der Parametereingabe über die Schaltfläche "*Exit*" werden <u>keine</u> Änderungen übernommen und die ursprüngliche Geometrie wieder angezeigt.

Die Schaltflächen für "Un-Do" und "Re-Do" erlauben	Contempology Filename: CR01b_Surface_Mount_Magnets.top
Werte zurückzugehen.	File Edit Magnets Options
	Types of Rotor: CR01b_Surface_Mount_Magnets
	Geometry Basic Elements
Abb. 24: Rotor bearbeiten - Un-Do und Re-Do	Number of magnets

3.1.2.2 "EditGeometry" – benutzerspezifische Geometrien

Ab der Version 2.11 können in allen Standardtopologien benutzerspezifische Geometrieelemente hinzugefügt und bearbeitet werden.

Abb. 25: Geometrie bearbeiten - User defined Elements

Einzelheiten dazu sind in dem Dokument *"Topologies 2.11.00 de.pdf"* beschrieben, das über das Menü *"Help – About"* geöffnet werden kann.

3.1.2.3 Plausibilitätsprüfungen

Zur Entwicklung einer Geometrie kann der Benutzer grundsätzlich in beliebiger Reihenfolge Parameterwerte eingeben, die auf Grund ihrer Abhängigkeit von anderen Werten zunächst nicht plausibel erscheinen, weil sie außerhalb des aktuell zulässigen Wertebereiches liegen. Eine Geometrie ist daher erst dann in sich konsistent, wenn alle Parameter mit korrekten Werten eingegeben wurden.

Alle Werte werden unmittelbar nach ihrer Eingabe einer Konsistenzkontrolle unterzogen. Je nach Art werden dabei festgestellte Unverträglichkeiten wie folgt behandelt:

 Bei Eingabe eines zu kleinen bzw. zu großen Wertes wird der Wert automatisch auf den zulässigen minimalen bzw. maximalen Wert zurückgesetzt. Beispiel: der Magnet kann nicht breiter sein als der Sektor des Rotors. Die Eingabe der Anzahl der Magnete hat eine höhere Priorität. • Die von dem eingegebenen Wert beeinflussten Linien und Flächen werden in der Grafik mit den sich ergebenden Überschneidungen in roter Farbe dargestellt. Gleichzeitig wird die Schaltfläche "Apply" in "Bad Geometrie" umbenannt und die gesamte Schaltfläche ebenfalls rot gefärbt. Der Benutzer muss nun seine letzte Eingabe korrigieren oder andere Werte so verändern, dass die Geometrie keine Inkonsistenzen mehr aufweist.

Abb. 26: Rotor bearbeiten - Magnet außerhalb Rotorgeometrie

 Offene Linien und Kreisbögen werden in blauer Farbe dargestellt. Sofern diese auf den Sektorlinien zum Luftspalt hin liegen stellt das kein Problem dar. Diese Linien dienen zur Anbindung des Rotors an den mittleren Luftspaltlayer. Sollten nach einem DXF-Import einer Rotor- oder Statorgeometrie weitere offene Linien bzw. Kreisbögen existieren, muss dies in der CAD-Zeichnung überprüft und behoben werden (siehe auch 7.4.2 DXF Import). Die Liniendicken können in *"smartFEM Settings – GUI"* eingestellt werden.

3.1.2.4 Basisparameter

In der Parametergruppe "*Basic*" werden die sogenannten Basisparameter angezeigt:

Topology Filename: CR02b_Embedded_Magnets.top		×		
File Edit Magnets Options				
9 C				
Types of Rotor: CR02b_Embedded_Magnets		•		
Geometry Basic Elements				
		_		
Basic node angle	Bna 1	deg		
Decimal places	Dp 2			
Scaling factor	Sf 1			
Node chain connection to airgap {0=none, 1=line, >1=closed area}	NccType 1			
Priority {0=Node Distance Factor, 1=Number of Segments}	NdPrio 0			
Type of help line text {0=parameter name, 1=value, 2=name+value, 3=name+value+unit}	HItType 0			
Apply Exit				
Topology Release 31-215				

Abb. 27: Basisparameter

Basic node angle	minimaler Knotenabstand am Luftspalt in deg. Ein genaue Definition und Erläuterung erfolgt in 3.1.2.5		
Decimal Places	Anzahl der angezeigten Nachkommastellen		
	Alle Parameter werden nach der Eingabe bzw. vor der Ausgabe entsprechend gerundet.		
Scaling Factor	Maßstab zur Vergrößerung bzw. Verkleinerung ausschließlich für die Rotorgeometrie. Alle Eingabeparameter werden mit diesem Faktor multipliziert.		
Ausnahme:	Innen- bzw. Außenradius des Stators bei Innen- bzw. Außenläufer, die jeweils aus Außen- bzw. Innenradius des Rotors + Luftspalt berechnet werden. D.h. hier erfolgt eine Streckung der Statorparameter in radialer Richtung.		
Node chain connection to airgap	Hiermit kann die Anbindung der Geometrie an den Luftspalt gesteuert werden.		
Priority	Steuerung ob der Eingabewert " <i>Node Distance Factor"</i> oder " <i>Anzahl Segmente"</i> auf den Kontenketten konstant gehalten wird.		

3.1.2.5 Knotenketten

Basis für die zu den FEM-Berechnungen erforderliche Vernetzung sind die aus den Zeichnungselementen "Linie", "Kreisbogen" und "Kurvenabschnitt" gebildeten Knotenketten. Dabei wird aus jedem Zeichnungselement eine Anzahl von Teilstücken (Segmente) als Linien gebildet, deren Anfang und Ende jeweils durch Knoten gekennzeichnet werden.

Abb. 28: Knotenketten mit Anzeige des Basisknotenwinkels

Die Anzahl der Linienstücke eines Zeichnungselementes ergibt sich zu:

• Rotierende Motoren:

Number of Segments = Integer $\left(\frac{\text{element length}}{\text{Bna} \times \text{Node distance factor}}\right)$

Bna = Base node angle [deg] oder auch Basisknotenwinkel

= Winkel zwischen 2 Knoten am Luftspalt

Node distance factor = Element spezifischer Faktor (Eingabe in Parameter Gruppe "Elements")

• Linearmotoren:

Number of Segments = Integer $\left(\frac{\text{element length}}{\text{Bnd} \times \text{Node distance factor}}\right)$

Bnd = Base node distance [mm] oder auch Basiskontenabstand

= Abstand zwischen 2 Knoten am Luftspalt

Node distance factor = Element spezifischer Faktor (Eingabe in Parameter Gruppe "Elements")

Basisknotenwinkel und elementabhängigen Faktoren sind für jede Topologie mit Werten vorbesetzt, die ein "gutes" Netz für die FEM-Berechnungen ergeben.

Der Benutzer kann den Basisknotenwinkel bzw. Basiskontenabstand in der Parametergruppe "*Basic*" anpassen. Er gilt für alle Zeichnungselemente. Die elementabhängigen Faktoren werden in der Gruppe *"Elements*" für jedes Zeichnungselement individuell angepasst.

Die Einstellung des Knotenabstandes im mittleren Luftspaltlayer, der für eine genaue Kraftberechnung bedeutend ist, erfolgt in dem Dialog "*Motor Parameters"* mit dem Parameter "*Min. Rotation Step"* (siehe auch 3.6). Er sollte so gewählt werden, dass die Netzelemente möglichst quadratisch sind.

Abb. 29: Knotenketten im Luftspalt

3.1.2.6 Anpassung von Knotenketten

Beim Klick mit der rechten Maustaste auf ein Zeichnungselement (Punkt, Linie, Bogen) wird das Element mit zusätzlichen Informationen hervorgehoben.

Gleichzeitig wird im Parameterfenster auf die Gruppe "*Elements*" gewechselt, der Cursor in das entsprechende Parameterfeld positioniert und zusätzliche Informationen angezeigt.

Ein Element kann auch durch die Eingabe der Elementnummer ausgewählt werden.

Für das ausgewählte Element kann mit dem Parameter "*Node distance factor*" der Knotenabstand als ein Vielfaches des Basisknotenabstandes eingegeben werden. Anschließend wird die Anzahl der Segmente berechnet. Bei Eingabe von "Number of Segments" wird der "*Node distance factor*" auf Basis dieser Anzahl korrigiert.

Topology Filename: CR01b_Surface_Mount_Magnets	×
File Magnets	
Types of Rotor: CR01b_Surface_Mount_Magnets	•
Geometry Basic Elements	
Display all elements	
Line No.	L 8
Node distance factor	1
Factor for nonlinear node distance {-1 \leq fact. \leq 1}	0
Number of segments	23
Length	I 6 mm
Angle	α 0 deg
Arc No.	A 🖪 🗮
Node distance factor	1.02
Number of segments	27
Radius	r 15 mm
Apex angle	α 27,49 deg
Length	I 7,2 mm
Curve No.	C 0

Abb. 31: Rotor-Geometrie - Gruppe "Elements"

Je nach Einstellung des Parameters "*Priority"* in Parametergruppe "*Basic"* wird bei einer Längenänderung des Elements der "*Node distance factor"* oder "*Number of segments"* konstant gehalten.

Bei Linien können mittels eines zusätzlichen Faktors $-1 \leq$ *"Nonlinear node distance factor"* ≤ 1 nichtlineare Knotenabstände erzeugt werden, um die Knotenabstände am Anfang und Ende einer Linie an die jeweils benachbarten Elemente anzupassen. Durch Wechsel des Vorzeichens wird die Richtung der Knotenabstände umgekehrt.

Abb. 32: Rotor-Geometrie - nichtlineare Knotenkette

3.1.3 Stator

Die Statorgeometrie wird entsprechend wie die Rotorgeometrie aufgerufen und bearbeitet. Auch hier stehen verschiedene Statortopologien zur Verfügung, aus denen der Benutzer auswählen kann.

Mit der Angabe "One Coil Per Slot" bzw. "Two Coils Per Slot" wird als Wicklungstyp "Ein-Schicht-" bzw. "Zwei-Schicht-Bruchlochwicklung" festgelegt. Bei einigen Statortopologien kann für "Zwei-Schicht-Bruchlochwicklungen" neben der Lage in linker/rechter Nuthälfte auch Unter-/Oberlage mit gleich großen Flächeninhalten ausgewählt werden.

Die Bearbeitung der Knotenketten erfolgt analog wie beim Rotor.

Abb. 33: Stator bearbeiten

3.1.4 Speichern, DXF- und FEMAG-Export

Nach Bearbeitung der Rotor- und Statorgeometrie kann das gesamte Modell gespeichert und die Geometrie in Formaten von FEMAG- und DXF-Dateien exportiert werden.

Abb. 34: Motorgeometrie speichern und exportieren

Alle Zeichnungselemente einer Topologie in eine DXF-Datei basierend auf den Spezifikationen der "AutoCAD® dxf-reference" Dokumente exportiert werden:

- Rotor
- Stator
- Periodic Model
- FEM Model

Dabei kann zusätzlich angegeben werden ob nur Materialkonturen oder Konturen von Eisenmaterial exportiert werden soll.

Abb. 35: Motorgeometrie speichern und exportieren

Weitere Einzelheiten sind in Kapitel "7.5 DXF Export" beschrieben.

3.2 Materialien

Durch Klick mit der linken Maustaste auf die Schaltfläche "Material" wird ein Popup-Fenster für die Zuweisung der Materialdaten für Elektrobleche, Magnete und Wicklungen geöffnet.

Abb. 36: Zuweisung der Materialeigenschaften

Die *"Relative Länge"* der Materialien bezieht sich auf die Motorlänge = aktive Luftspaltlänge, die in *"Motor Parameters"* angegeben ist. Sie wird zusammen mit der Materialdichte für die Berechnung von Massen und Trägheitsmomente benutzt und auch bei Berechnung von BEMF, Drehmomenten, etc. berücksichtigt.

3.2.1 Stator Wicklung

Material Settings -	- MotorDesignTemp	Stator Coil	- 0 X
<u>Stator Steel</u> Rotor Steel Magnets	Coil Material	5600000	S/m
	Properties Mass Density:	8960	kg/m ³
	Mass:	0,145	kg
	Relative Length:	100	%
	Area:	141,372	mm²
	Apply	Exit	
	. 46.1		

Abb. 37: Materialien - Stator mit Wicklungsparameter

Die Parameterwerte von "Leitfähigkeit", "Dichte" und "Relative Länge" können editiert werden. Sie sind mit den Daten von Kupfer vorbesetzt.
3.2.2 Stator und Rotor Eisen

🗿 Material Settings	MotorDesignTemp	o.mot	. 🗆 🗙
⊡- Model Stator Coil Stator Steel Rotor Steel Magnets	Steel Material Type: μr: Properties	Stator Steel]
	Mass Density: Mass:	7900	kg/m³ kg
	Relative Length: Area:	877,461	% mm²

Abb. 38: Materialien - Statoreisen Parameter

Der Benutzer kann zwischen Materialtyp "Linear" und Nicht-Linear" auswählen:

- "Linear"

Die Werte für *"µr"*, *"Dichte"* and *"Relative Länge"* können angegeben werden.

- "Non-Linear"

Die in den *"smartFem Settings"* angegebenen Materialverzeichnis gespeicherten Dateien mit Materialdaten werden in einer Auswahlliste angezeigt und die entsprechende Datei kann ausgewählt werden.

😵 Material Settings	MotorDesignTemp	o.mot	
⊡ Model Stator Coil Rotor Steel 1 Rotor Steel 2 Magnets	Steel Material Type: Material: Properties Mass Density: Mass: Relative Length: Area:	Rotor Steel 2] kg/m³ kg % mm²

Abb. 39: Materialien - Auswahlliste "Nicht-Lineare" Materialdaten

Für die Zuweisung verschiedener Materialien in Rotor oder Stator Topologien können je Fläche unterschiedliche Materialnummern *"MatNo"* in der Parametergruppe *"Elements"* zugewiesen werden, wobei die Flächen dann in verschiedenen Farbabstufungen dargestellt werden. Dies muss als Erstens getan werden, bevor in "Materials" die entsprechenden Materialdaten ausgewählt werden können.

Abb. 40: Materialien - Zuweisung verschiedener Materialnummern "MatNo" zu verschiedenen Flächen innerhalb einer Topologie

Die Erstellung und Pflege der Materialdateien mit BH-Kurven und Verlustwerten/-Koeffizienten kann mit dem Material Explorer (siehe 3.2.5 Material Explorer - Beschreibung nichtlinearer Materialkennlinien) erfolgen.

3.2.3 Magnete

Zur Beschreibung der Magnete für lineare Berechnungen werden Remanenzinduktion Br, relative Permeabilität μ_r und Leifähigkeit des verwendeten Magnetmaterials angegeben.

📀 Material Settings -	- MotorDesignTemp	o.mot	- 0 X
⊡. · Model Stator Coil		Magnets	
Stator Steel Rotor Steel 1	Magnet Material –		_
Magnets	Туре:	Linear	•
	μr:	1,05	
	Br:	1,2	Т
	Conductivity:	625000	S/m
	Magnetization:	Parallel	•
	Properties		
	Mass Density:	7600	kg/m ³
	Mass:	0,177	kg
	Relative Length:	100	%
	Area:	232,609	mm²

Abb. 41: Materialien - Magnete

Für nicht-lineare Berechnungen können die Entmagnetisierungskurve und Verlustdaten ebenfalls mit dem *"Material Explorer"* beschrieben und in *"Material"* werden.

Die Magnetisierungsrichtung kann mit *"Parallel"*, *"Radial"*, *Halbach"* und *"User Defined"* festgelegt werden, wobei die Magnetisierungsrichtung im Grafikfenster angezeigt wird.

	😨 Material Settings -	- MotorDesignTemp	o.mot	- 0 X
Air Magnets Rotor Steel Stator Steel Coils	⊡ Model	Magnet Material - Type: μr: Br: Conductivity: Magnetization: Properties Mass Density:	Magnets	▼ T S/m ▼ Edit kg/m ³

Abb. 42: Materialien - Magnetisierung

Für "*Parallele" Magnetisierung kann zudem ein Offsetwinkel zur Rotation der Magnetisierungsrichtung angegeben werden.*

Für *"Radiale"* Magnetisierung kann diese in einer Tabelle editiert, als Grafik dargestellt und in einer Datei *.dat z.B. im Materialverzeichnis gespeichert werden. Die Magnetisierung wird automatisch auf die jeweilig gewählte Magnetbreite ($W_m =$ 180 °el) angepasst.

***	Angular Position,	Magnetisation in	
	el (totally 1 pitch)	each point Br,T	Magnetisation of Positive Magnet Pitch
1	0	1,1	Br(T)
2	3	1,13	1,20
3	10	1,175	
4	30	1,19	1,18
5	90	1,195	
6	150	1,19	1,16
7	170	1,175	1 14
8	177	1,13	1.12.1
9	180	1,1	1,12
			1,10 0,0 30,0 60,0 90,0 120,0 150,0 180,0 α(⁴

Abb. 43: Materialien - Magnetisierungstabelle

Bei "User Defined" Magnetisierung kann für jeden einzelnen Magneten als weitere Parameter "North" bzw. "South", "Br" und "µr" in einer Liste editiert werden.

🚱 Magnets D	efinition					
Options	Mag. Type					
Magnet Pitch	Туре	Direction	Offset	Br_max	Muer	Vectors
No. 1	Radial	North	0	1,2	1,05	Default
No. 2	Radial 💌	South	0	1,2	1,05	Default
No. 3	Parallel	North	0	1,2	1,05	Default
No. 4	Halbach	South	0	1,2	1,05	Default
No. 5	Radial	North	0	1,2	1,05	Default
No. 6	Radial	South	0	1,2	1,05	Default

Abb. 44: Materialien - Benutzer definierte Magnete

Zusätzlich besteht noch die Möglichkeit, gemessene Magnetisierungen von Ringmagneten einzulesen und für die Verwendung in smartFEM und FEMAG umzurechnen.

Abb. 45: Materialien - gemessene Magnetisierung

Zu den Messdaten müssen noch zusätzliche Parameter im Menü "Measure Options" angegeben werden.

🚱 Mag	. Vectors - 3	360°mech 🗖 🗖 💌
File	Options	Measure Options
	Angular °me	Y-Values Scaling
	Comple	Measure Distance From Magnet - 0,2mm
1	0	Yoke Muer - 800
2	0,02	Medium Muer - 1
3	0,04	Calculate Mag. Vectors
	0.00	Calculate Mag. Vectors

Abb. 46: Materialien - Zusatzparameter für gemessene Magnetisierungen

3.2.4 Relative Length

Für Permanentmagnete und Weicheisen können verschiedene magnetisch wirksame Längen in axialer Richtung (z-Achse) unter der Annahme berücksichtigt werden, dass der vom Magneten erzeugte Fluss im Rotor- und Statoreisen gleich bleibt. Als Referenzwert wird die Länge des Luftspalts = 100% angenommen.

Beispiel 1: elektrische Maschine mit Oberflächenmagneten

Die Eingabe einer relativen Länge ≠ 100% für Wicklungen wird bei der Berechnung des Wicklungswiderstandes berücksichtigt. Weiterhin wird die relative Länge bei der Berechnung der Massen bei allen Materialien berücksichtigt.

3.2.5 Material Explorer - Beschreibung nichtlinearer Materialkennlinien

Die Beschreibung der Materialeigenschaften für Elektrobleche und Permanentmagnete kann mit dem smartFEM *"Material Explorer"* vorgenommen werden. Über eine Schnittstelle können die Materialdaten für die FEM Berechnungen mit FEMAG, JMAG, MAXWELL, SPEED und formatierte Textdateien für andere Tools exportiert werden.

Der Material Explorer wurde in Zusammenarbeit mit ThyssenKrupp Electrical Steel (TKES) in Bochum erstellt und ist bei TKES unter dem Namen PowerCore[®] Explorer unabhängig von smartFEM erhältlich.

Die Funktionalität ist in dem Dokument "User Guide PowerCore Explorer" beschrieben.

3.2.5.1 Elektroband

Bei der Installation von smartFEM werden die Daten von drei TKES-Standardmaterialien für nichtlineare Berechnungen mit smartFEM im Materialverzeichnis ...\smartFEM\Materials angelegt. Weitere Materialdaten aus dem Lieferprogramm von TKES sind bei TKES erhältlich.

Abb. 47: Material Explorer - B(H) und Verlustdaten von Elektroband

3.2.5.2 Permanentmagnete

Neben Elektroband können mit dem Material Explorer auch nichtlineare "Entmagnetisierungs-Kennlinien" von Permanentmagneten erfasst und als FEMAG spezifische mc-, mca- und txt-Dateien gespeichert werden. Dazu muss bei der Speicherung der Materialtyp "*Permanent Magnet*" ausgewählt werden.

Abb. 48: Material Explorer - Entmagnetisierungs-Kennlinie

Derzeit müssen die Entmagnetisierungs-Kennlinien eines Materials für verschiedene Temperaturen einzeln erfasst und gespeichert werden.

Verlustkoeffizienten und -daten werden z. Z von smartFEM nicht verwendet. Zur Berechnung der Wirbelstromverluste in den Magneten wird die in *"Materials"* eingegebene Leitfähigkeit verwendet.

Die Erfassung der Kennlinien von <u>nicht</u> magnetisiertem Magnetmaterial erfolgt analog der Kennlinien für Elektroband. Diese Daten werden bei der Simulation von Magnetisierungsvorgängen mit dem smartFEM Modul "*PM* - *Magnetization* - *Inner Rotor"* verwendet.

3.3 Preprocessing

Voraussetzung für die Berechnung von Ergebnissen und deren Analyse mittels FEM-Simulation ist der Aufbau des FEM-Modells in FEMAG. Nach Betätigung der Schaltfläche *"Preprocessing" wird FEMAG gestartet,* alle erforderlichen Informationen über Geometrie, Knotenketten und Materialien an FEMAG übergeben und der FEMAG-Prozess von smartFEM bis zur Feldberechnung mit der FEMAG-Menuefolge *"Field Calculation"→"Calculate Once"* gesteuert.

Abb. 49: Preprocessing - Aufbau des FEM-Modells mit FEMAG

Nach erfolgreichem Durchlauf des *"Preprocessing"* wird in die Schaltfläche der Text *"Calculation"* eingeblendet. Der Benutzer kann jetzt - sofern das zu diesem Zeitpunkt sinnvoll ist - eine erste FEM-Simulation mit Ermittlung des Cogging Torque durchführen (siehe 3.6.2 Cogging Torque und BEMF).

Das "Preprocessing" kann nach rechten Mausklick auf die "Preprocessing" Schaltfläche wie folgt gesteuert werden:

- Show/Hide FEMAG Zeigen/Verbergen der FEMAG Fenster.
- Stop FEMAG on Error FEMAG wird nach einem Fehler angehalten, damit der Benutzer die Fehlerursache ermitteln kann.
- Only Meshing Es wird nur die Vernetzung durchgeführt.
- PreProcessing+Calculation Im Anschluss an das *"Preprocessing"* wird automatisch die in Motor Parameters ausgewählte Berechnungsart durchgeführt.

Abb. 50: Preprocessing - Show FEMAG

Nach dem das *"Meshing"* erfolgreich abgeschlossen wurde, kann die Darstellung des Netzes über die Schaltfläche *"Plots"* aufgerufen werden

Abb. 51: Preprocessing - Netz und Knotenketten

Das "Preprocessing" kann nach Optimierung des Netzes durch ein weiteres Betätigen der Schaltfläche "Preprocessing" zu Ende geführt werden.

Sobald zu einem späteren Zeitpunkt eine Änderung in Motorgeometrie oder Material vorgenommen wird, wird der Schaltflächentext *"Calculation"* automatisch auf *"Preprocessing"* zurückgesetzt, alle Berechnungsergebnisse gelöscht und das Preprocessing muss erneut ausgeführt werden.

Für die Berechnung weiterer Ergebnisse z.B. BEMF, Torque, etc. muss das Motormodell mit Informationen über Wicklungen und weiteren Motorparametern vervollständigt werden.

Die Berechnung der Feldverteilung im Inneren des Rotors (Region < innerer Rotorradius Rri) kann bei vollständigen Maschinenmodellen (360°mech) erfolgen. Dazu muss in "*Motor Parameters*" im Menü "*Options*" "*Calculate and Mesh Shaft Area*" gewählt werden.

Abb. 52: Preprocessing - Calculate and Mesh Shaft Area

Abb. 53: Preprocessing - Mesh and Calculate Shaft Area (2)

Diese Art der Vernetzung ist nur für vollständige Maschinenmodelle möglich, da Femag in allen anderen Fällen Randbedingungen auf Rri benötigt.

Hinweis: Ohne diese innere Vernetzung wird die Feldverteilung bei 2-poligen Maschinen fehlerhaft berechnet!

Abb. 54: Preprocessing - fehlerhafter Flusslinienverlauf

korrekter Flusslinienverlauf

Abb. 55: Preprocessing - korrekter Flusslinienverlauf

3.4 Feldbilder (Plots)

3.4.1 Definition und Anzeige von Feldbildern

Nach erfolgreicher Durchführung des *"Preprocessing"* kann die Auslegung des magnetischen Kreises mit Hilfe von *"Plots"* beurteilt werden. Dazu wird in dem Menü "Field Plots Definition" unter "Plots - Define Picture" aufgerufen:

🚱 Field Plo	ts Definition									- 0	
Options	Edit Data										
Set No.	RotorAngle	ls	Phase Shift	i_U	i_V	i_W	Torque [Nm]	Picture	Report	Defin	e
1	0			0	0	0	0,00E+00	No		Plot	
											Define Picture - Set No.1 Show Picture - Set No.1 Delete Picture Paste Currents

Abb. 56: Field Plots - Field Plots Definition

Nachdem sich das Plot Fenster geöffnet hat (ggfs. werden vorher von FEMAG noch Feldberechnungen vorgenommen), können die verschiedenen Plots ausgewählt und angezeigt werden:

Abb. 58: Field Plots - Entmagnetisierung

Anzahl Flusslinien, Skalierung und weitere Parameter können nach Klick mit rechter Maustaste auf den Auswahlknopf angepasst werden.

Die Plots können sowohl auf den Bildschirm als auch in den Projektbericht ausgegeben werden. Dabei können alle Plots miteinander überlagert werden. Die Überlagerung wird durch einen weiteren Mausklick auf die entsprechende Schaltfläche wieder rückgängig gemacht. Die Anzahl der dargestellten

Flusslinien und die Minimal- bzw. Maximalwerte der Ergebnisskalierungen können nach Klick mit der rechten Maustaste auf die jeweilige Schaltfläche angepasst werden.

Weiterhin können Details mit Hilfe der bekannten Zoomfunktion beliebig tief betrachtet werden. Zusätzlich werden die x/y-Koordinaten des Mauszeigers und weitere Informationen in der Statuszeile angezeigt.

Der Benutzer kann aus folgenden Plots auswählen:

- Geometrie
 - Punkte Linien Flächen
- FEM-Basis
 - Knoten Knotenketten Vernetzung
 - Materialien
- Ergebnisberechnungen magnetischer Kreis
 - Vektor Potenzial Stromdichten Flusslinien Magnetische Induktion Entmagnetisierung Relative Permeabilität Remanenz Magnetische Polarisation

Eine größere Anzahl von Sets kann mit Hilfe der Funktion "Parametric" erzeugt werden.

ſ	Field Plo	ts Defir	ition				
l	Options	Edit	Dat	a			
l	Set No.	Roto		Add	•	New Data Set	Torque [Nm]
l	1	0		Remove	•	Parametric by Phase Currents	0,00E+00
l				Paste Currents to Set No.1	•	Parametric by Phase Shift	
l				Delete All Pictures		Add Datasets for d/q Axis	
l			_			,	
l							

Abb. 59: Field Plots - Tabelle zur parametrischen Definition von Sets

Weiterhin kann der Benutzer mit entsprechenden FEMAG-Kenntnissen das erzeugte FEMAG-Modell mit FEMAG direkt bearbeiten bzw. auswerten (siehe 7.3 FEMAG).

3.4.2 Modelldaten

Zur benutzerdefinierten Auswertung können die Eigenschaften von Knoten und Netzelementen über das Clipboard exportiert werden:

Abb. 60: Field Plots - Modelldaten exportieren

							ES	NODES PROPERTI
			Vre [V/m]	Angle [rad]	Rad [mm]	Y [mm]	X [mm]	Nr.
			0	1,570796371	4,999999888	4,999999888	-2,55E-11	1
			0	1,675516129	4,999999888	4,972609226	-0,52264228	2
			0	1,780235767	4,999999888	4,890738055	-1,039557974	3
			-0,000953574	1,570796371	8,999999613	8,999999613	0	4
			-0,000947984	1,599885106	9,00000544	8,996193297	-0,2617625	5
							S	MESH PROPERTIE
Nodes	Bs[T]	Bt[T]	Br[T]	nterAngle[°mech]	CenterR[mm]	Area[mm2]	Material	Nr.
(783 48 47)	0,172100415	-0,172096813	0,001113491	146,6292893	5,114084	0,094855711	RotorYoke	1
(783 526 48)	0,176785028	-0,17678462	-0,000379586	148,6280981	5,282548	0,094855713	RotorYoke	2
(784 43 532)	0,752450881	-0,751927743	0,028053478	149,5313127	8,740101	0,053620981	RotorYoke	3
(784 42 43)	0,76099465	-0,760617302	0,023961995	148,9787244	8,906621	0,036313581	RotorYoke	4
(785 7 8)	0,700547099	0,700147637	0,023654246	91,02122319	8,906616	0,036315428	RotorYoke	5
(1386 574 575)	1,120316116	-0,461262713	1,020952942	146,8191891	13,00234	0,027852678	Magnet1	1383
(1386 620 574)	1,126011549	-0,473463444	1,021633191	147,1621962	13,12514	0,027852653	Magnet1	1384
(1387 103 619)	0,689614374	0,265874223	0,636300937	147,2623732	14,85829	0,021788364	Magnet1	1385
(1387 102 103)	0,43097072	0,059100694	0,426899132	146,9229567	14,94144	0,023175448	Magnet1	1386
(1388 49 50)	0,380754848	-0,116518681	0,36248814	93,07703825	14,94144	0,023175551	Magnet1	1387
(640 641 642 1995)	0,238358363	-0,236666066	-0,028352828	90,41919031	14,86109	0,054310899	Air	2719
(639 640 1995 1996)	0,167168896	-0,163672559	-0,034010782	90,41919034	14,61132	0,053398312	Air	2720
(638 639 1996 1997)	0,092795729	-0,08789884	-0,029746282	90,41919036	14,36155	0,052485521	Air	2721
(637 638 1997 1998)	0,034453059	-0,028442925	-0,019442563	90,4191904	14,11179	0,05157273	Air	2722
(636 637 1998 1999)	0,007595036	0,003608685	-0,00668296	90,41919043	13,86202	0,050659939	Air	2723
(2015 659 662)	1,771082592	-0,049111997	1,770401525	109,2922672	22,44139	0,089996783	StatorYoke	2755
(2015 658 659)	1,698757423	0,003731617	1,698753324	109,7093078	22,61428	0,089996749	StatorYoke	2756

Abb. 61: Field Plots - Beispiel exportierte Modelldaten

Über "*Calculate"* können Drehmoment, Radialkraft und der Winkel des Kraftvektors im Luftspalt berechnet werden. Gleichzeitig werden die Daten im Zwischenspeicher zur Verfügung gestellt.

Options Define Picture	Calculate	Info
Clear All	Force in Airgap Rotor pos. = 0 mech	T
Geo Points	i_V = -5,00000 A i_V = 10,00000 A i_W = -5,00000 A	FN - 0 N Angle - 0
Geo Lines		Results Copied to Clipboard!
Geo Areas		ОК
Nodes		

Abb. 62: Field Plots - Force in Airgap

3.4.3 Erzeugung von Feldbildern mit gleichem Layout

In der "*Field Plots Definition"* Tabelle können mehrere Bilder für unterschiedlichen Rotorpositionen und Ströme definiert werden. Sie können jeweils einzeln über "*Define"*—"*Picture"* mit jeweils anderem Inhalt festgelegt werden. Ströme können dabei manuell eingegeben oder für die ausgewählten Tabellenzeilen über den Dialog "*Data"*—, *Paste Currents"* aus den Ergebnissen für "*Expected values"*, "*Nominal Torque"* oder "*Dynamic"* übernommen werden.

Options	Edit Data									
Set No.	RotorAngle 🕚	ls	Phase Shift	i_U	i_V	i_W	Torque [Nm]	Picture	Report	Define
1	0			0	0	0	0,00E+00	Yes		Plot
2	0			-5	10	-5	9,80E-01	Yes		Plot
3	6			-7,43	9,51	-2,08	0,00E+00	No		Plot
4	12			-9,13	8,09	1.04	0,00E+00	No		Plot
5	18			-9,94	5,87	4,07	0.00E+00	No		Plot
6	24			-9,78	3,09	6,69	0,00E+00	No		Plot
7	30			-8,66	0	8,66	0,00E+00	No		Plot

Abb. 63: Field Plots - Definition von Sets

Die Bilder können auch alle zusammen mit "Solve All" erzeugt werden, wobei dann alle Bilder den gleichen Ausschnitt zeigen. Dazu muss allerdings zuvor die Settings eines Bildes über "Options" \rightarrow "Save Settings" und das Bild selbst mit "Define Picture" gespeichert werden.

Wenn man anschließend in ein Bild mit "*Show Picture*" aufruft und in der "*Field Plots Definition*" Tabelle mit den Pfeiltasten auf- bzw. abwärts betätigt, werden alle Bilder nacheinander direkt gezeigt, so dass die Feldänderungen sehr gut beobachtet werden können. Mit Klick auf eine Spaltenüberschrift wird die Tabelle entsprechend den Spaltenwerten auf- oder abwärts sortiert.

Abb. 65: Field Plots - Darstellung der Plots je Set

Flusslinien können in unterschiedlichen Farben dargestellt werden (Standardwert ist Schwarz/Weiß). Mit Klick der rechten Maustaste auf die Schaltfläche *"Flux Lines"* öffnet sich ein entsprechendes Pop-Up Fenster, in dem u.a. Die Farben eingestellt werden können.

Abb. 66: Field Plots - Farbige Flusslinien

In den smartFEM Settings können die Farben für die Richtung der Flusslinien im und gegen den Uhrzeigersinn eingestellt werden.

······································	General
General	Topology Window
	C Press Enter = Apply Changes and Exit
	Press Enter = Apply Single Parameter Only
	Vertical Spacing: 25
	Motor Parameters Window
	I Unlock Min. Rotation Step
	Flux Lines Colors
	Clockwise Orientation Color Red
	CounterClockwise Orientation Color Blue

Abb. 67: smartFEM Settings – Farbauswahl und Orientierung von Flusslinien

Die Tabelle "Field Plots Definition" kann mit allen Berechnungsergebnissen ins Clipboard kopiert werden:

ſ	🚱 Field Plo	Field Plots Definition			
I	Options	Edit Data			
I	Set No.	Copy Sets		ls	Phase Shift
Ľ		Paste Sets			
h		23,3333352	250		0
		17,33333472	250		0

Abb. 68: Field Plots – Copy Sets

	Α	В	С	D	E	F	G	Н	Ι	J	K
1	RotorAngle [Is [A]	Theta [°el]	i_U [A]	i_V [A]	i_W [A]	Torque [Nm]	Flux_U [Vs]	Flux_V [Vs]	Flux_W [Vs]	T/Is [Nm/A]
2	0	250	0	-43,41	-191,5	234,9	1274,02588	0,203206	-0,247091	0,0518997	5,0961
3	23,3333352	250	0	0,0002947	-216,5	216,5	1270,30273	0,232939	-0,226686	0,00748404	5,0812
4	17,3333347	250	0	250	-125	-125	1296,38147	0,1333	0,1258	-0,2672	5,1855

Abb. 69: Field Plots – Tabelle mit Berechnungsergebnissen

3.5 Wicklungen

Zur Beschreibung der Wicklungen besitzt smartFEM einen Wicklungseditor. Sofern es zu der bis zu diesem Zeitpunkt beschriebenen Motorgeometrie mindestens ein zulässiges Wickelschema gibt wird die Schaltfläche "Winding Defined" angezeigt und das Wickelschema als Default vorgegeben. Ansonsten wird der Text "Winding Not Defined" in die Schaltfläche eingeblendet. Es können n-phasige Wickelschemata als Ein-/Zweischicht mit Ganz-/Bruchlochwicklungen und parallelen Wicklungsgruppen/Phase beschrieben werden.

Abb. 70: Wicklungseditor - Aufruf über die smartFEM Schaltfläche "Winding ..."

Die Nummern der Nuten (S..) und der einzelnen Wicklungen (C..) werden inkl. Stromrichtung (in/out) in den Wicklungsflächen angezeigt.

Farben und Größen der Texte und Icons können in <i>"smartFEM Settings</i> – <i>GUI"</i> eingestellt werden.	smartFEM Settings	GUI
	GUI	Topology Window C Press Enter = Apply Changes and Exit Image: Press Enter = Apply Single Parameter Only Vertical Spacing: 25
		Flux Lines Colors Clockwise Orientation Color Red CounterClockwise Orientation Color Blue
Abb. 71: Wicklungseditor - Icon-/Textfarben und -größen in smartFEM Settings		Vinding Coil Icon Color Text and Icon Size

3.5.1 Wicklungsparameter

Über die Schaltflächen *"Winding Definition"*- \rightarrow *"Coils Parameter"* öffnet sich ein Popup-Fenster in dessen Eingabefelder der Drahtdurchmesser, die Windungszahl je Wicklung und je ein additiver Phasenwiderstand und induktion eingegeben werden können.

Als Leitertyp können "rund" oder "rechteckig" ausgewählt werden.

Zusätzlich wird die für die Wicklung verfügbare Nutfläche je Nut und der Füllfaktor angezeigt. Der Füllfaktor berechnet sich aus:

Fill Factor = Number Of Turns per Coil * Conductor Area / Slot Area

Coils Parameters
Options
Phase Resistances:
Active per mm Length: Overhang:
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Complete:
R_U=2,8627E-02 Ω R_V=2,8627E-02 Ω R_W=2,8627E-02 Ω
User Defined Phase Parameters
Added Resistance in Series: Ω Ω
Added Inductance in Series: 0 H
Wire Parameters
Slot Area For Coil Placement: 159,3mm ²
Conductor Type: Round
Conductor Diameter: 4,272 mm
-Number of Turns per Coil
Coil Number 1 7 Fill Factor = 0,63
Coil Number 2 7 Fill Factor = 0,63
Coil Number 3 7 Fill Factor = 0,63 *
Apply Exit

Abb. 72: Wicklungseditor - Coils Parameters

Mit Options wird ein weiteres Menü aufgeblendet. Es stehen dann Funktionen zur Angabe der Windungszahl, Berechnung der Anzahl Windungen bei einem vorgebbaren Füllfaktor und Berechnung des Leiterquerschnitts bei vorgebaren Werten für Füllfaktor und Windungszahl zur Verfügung.

😵 Coils Para	meters			- 0	X	
Options						
Defau	lt NTurns		ъŤ			
Calculate Number of Turns			Ī			
Calcul	ate Conduct	or		-03 Ω -03 Ω		
Exit		Alt+F4	F	-03 Ω		

Abb. 73: Wicklungseditor - Coils Parameter - Options

3.5.2 Wickelschema

Über die Schaltflächen "Winding Definition"→"Winding Scheme" kann das Wicklungsschema in einer Liste bearbeitet werden. Zur Unterstützung wird der gesamte Motor als Grafik angezeigt. Sofern ein zulässiges Wicklungsschema existiert, wird dieses als "Auto Winding" angezeigt, wobei die Nuten entsprechend den Phasen farbig gestaltet sind. Die zu einem Eingabefeld gehörende Nutfläche, in der

sich der Cursor befindet, wird in gelber Farbe dargestellt. Mit "Auto Winding" wird das Wicklungsschema erzeugt, bei dem die maximale Spannung induziert wird.

Abb. 74: Wicklungseditor - Wicklungsschema "Zwei-Schicht-Bruchlochwicklung" mit Anzeige der Werte für Amplitude Flux Vector, Distibution-, Pitch und Winding-Faktor

Abb. 75: "Zwei-Schicht-Bruchlochwicklung Ober-/Unterlage" "Ein-Schicht-Wicklung"

"Ringwicklung"

"Options":

- *"Default Winding":* es wird wieder das Wicklungsschema angezeigt, mit dem das Fenster geöffnet wurde.
 "Auto Winding": es wird automatisch das Wicklungsschema mit der maximalen BEMF ermittelt und angezeigt.
 "Symmetric Winding": die Eingaben für die Phase U werden automatisch in die Phasen V und W mit einem Versatz von +120° el. übertragen.
- "Clear All": das Wickelschema wird gelöscht und kann anschließend durch den Benutzer neu definiert werden. Durch Klick in ein Eingabefeld der Liste werden die noch nicht festgelegten Wicklungen angezeigt und können ausgewählt werden. Die entsprechende Nutfläche wird anschließend in der Farbe der jeweiligen Phase gefüllt.

	😵 Winding Definition - PM BL	DC MotorDesignTemp.mo	t 🗆 🗆 🗙
	Options Coil Span = 1	Phase Shift - Auto	
Orbit Coils Phase W Coils Stato Steel Stator Steel Sta	Options Coil Span = 1 Slot No. 01 Right (0.0el*) Slot No. 01 Left (0.0el*) Slot No. 02 Light (120.0el*) Slot No. 03 Right (240.0el*) Slot No. 03 Right (240.0el*) Slot No. 03 Left (240.0el*) Slot No. 04 Left (0.0el*) Slot No. 05 Left (240.0el*) Slot No. 05 Right (0.0el*) Slot No. 04 Left (0.0el*) Slot No. 05 Right (102.0el*)	Phase Shift - Auto Phase U Phase U Phase U Phase I Pha	/ Phase W
S4 57 57 55 56	Stot No. 05 Left (120.0el') Stot No. 06 Right (240.0el') Stot No. 06 Left (240.0el') Stot No. 07 Right (0.0el') Stot No. 08 Right (120.0el') Stot No. 08 Right (120.0el') Stot No. 09 Right (240.0el') Stot No. 09 Left (240.0el')		

Abb. 76: Wicklungseditor - benutzerspezifische Definition des Wicklungsschemas

Ein von einem Benutzer definiertes Wicklungsschema wird durch "*Apply*" übernommen. Die gesamte Wicklungsdefinition kann mit "*File*"→"*Save Winding Definition*" in einer Datei gespeichert werden und später auch in anderen Motormodellen mit "*File*"→"*Open Winding Definition*" verwendet werden.

•	Winding Editor MotorDesignTemp.mot 📃 💷 💌
	File Winding Definition Diagrams
F	Open Winding Definition Strg+O
	Save Winding Definition Strg+S
	Exit Editor Alt+F4
	Number of Slots: 9
	Number of Poles: 6
	Parallel Branches per Phase: 1
	Apply Changes Cancel

Abb. 77: Wicklungseditor - Speichern bzw. Laden einer Wicklungsdefinition

Der Wicklungseditor wird mit "Apply Changes" verlassen, sofern die Wicklungsdefinition für das aktuelle Motormodell übernommen werden soll. Soll das aktuelle Motordesign nicht verändert werden, muss der Wicklungseditor über "Cancel" verlassen werden.

3.5.3 Phasendiagramm

Über das Menü "Diagrams" werden die Vektoren der Phasen und Wicklungen dargestellt. Damit kann der Benutzer auf einfache Weise das Wickelschema auf Fehler überprüfen.

Winding Editor		
File Winding Definit Motor Parameters	ion Diagrams Phasor Diagram	
Number of Phases:	3 Phase	
Number of Coils P	Phasor Diagram Coils	
Number of Slots:	Options Display	
Number of Poles:		
Parallel Branches	V	
	223	
	Sec.	
Appl	Ward COLORD	e080900000009
	30000	8
	and the second se	
	//////////////////////////////////////	
	STOC AND	
	Wo	

Abb. 78: Winding Editor - Phasendiagramm

3.6 Motorparameter und Berechnungen

Je nach durchzuführenden Simulationen und Berechnungen müssen verschiedene Motorparameter angegeben werden.

Alle Simulationen des Motors erfolgen rotorpositionsspezifisch, d.h. ausgehend von der grafisch dargestellten 0°-Normallage des Rotors wird der Rotor nach jedem Rechnungslauf um einen bestimmten Winkel gegen den Uhrzeigersinn gedreht, um dann die nächste Simulation durchzuführen. Vom Anwender können die Anzahl Rechenschritte und die Rechengenauigkeit als Abbruchbedingung vorgegeben werden.

Die Berechnungen werden über die Schaltfläche "*Calculation"* ausgelöst. Bei Klick mit der rechten Maustaste auf die Schaltfläche können verschiedene Einstellungen entsprechend der Schaltfläche "*Preprocessing"* vorgenommen werden.

3.6.1 Basis der Ergebnisberechnungen

Basis für die Berechnung der Ergebnisse ist das einphasige Ersatzschaltbild eines Synchronmotors.

Bei dem ausgewiesenen Drehmoment "Torque With Applied Current" handelt es sich um das "innere" Drehmoment, da Eisen-, Magnet- und sonstigen Verluste die zu einer Reduzierung des Drehmoments an der Welle führen nicht berücksichtigt sind. Diese Verluste können für die gegebene Drehzahl über die Formel P = T * ω als Drehmomentverlust berechnet und in "Torque After Losses" berücksichtigt werden.

Abb. 79: Ersatzschaltbild Synchronmotor

In *"Results"* wird unter dem Reiter "Overview" eine Übersicht der verschiedenen Ergebnisparameter (z.B. Verluste, inneres/äußeres Drehmoment, Wirkleistung, Scheinleistung, cosφ, Wirkungsgrad, etc.) ausgegeben. Verluste werden nur dann berücksichtigt, wenn sie vorher berechnet wurden.

Speed [rpm]	PcoreR [W]	PcoreS [W]	Pmag[W]	Pex[W]	Pwdg[W]	Plosses [W]	Tout[Nm]
D	0	0	0	0	23,38506	23,38506	1,05070
500,0	,1352E-01	1,73750	,1815E-02	0	23,38506	25,13789	1,01722
1000,0	,3204E-01	4,47056	,7258E-02	0	23,38506	27,89492	1,00763
1500,0	,6714E-01	8,19396	,1633E-01	0	23,38506	31,66248	0,99800
2000,0	0,11183	12,86580	,2903E-01	0	23,38506	36,39172	0,98860
2500,0	0,16200	18,03782	,4536E-01	0	23,38506	41,63025	0,98101
3000,0	0,23470	23,90816	,6532E-01	0	23,38506	47,59324	0,97364
3500,0	0,32028	30,45571	,8891E-01	0	23,38506	54,24996	0,96649

Abb. 80: Ergebnisparameter als "Overview"-Tabelle

3.6.2 Cogging Torque und BEMF

- Settings	Motor Parameters			- 0 X
Rotor	Options Post-Processing Calculation Types Cogging Torque + BEMF C Nom. Torque + Inductance Losses C Dynamic	Calculation Parameters Movement Type: Permeability Mode:	Full Period Rang Restored C Actual	e
Material	Model Parameters Info Min. Rotation Step: 0,25 • *mech	Number of Calculation Steps Per Perio Convergence Accuracy	d 20	
Winding Defined Motor Parameters	Cogging Torque Period: 5°mech BEMF Period: 90°mech Maximum Number of Steps: 20 2 PERIODS CALCULATED	Motor Length [Lmot] Skew Angle Number of Skew Steps	100 0 1	mm °mech
Preprocessing		Operational Speed	3000 Star	rpm
	Ac	ply Exit Res	et Results	

Abb. 81: Motor Parameters - Cogging Torque + BEMF

Model Parameters Info

- Minimum Rotation Step x°mech

Minimaler Drehwinkelschritt des Rotors in °mech. Dies entspricht gleichzeitig dem Knotenwinkel im mittleren Luftspaltlayer zwischen Rotor und Stator. Über die Selection Box können in andere Werte ausgewählt werden. Die Einstellung sollte so erfolgen, dass sich möglichst quadratische Netzelemente im mittleren Luftspaltlayer ergeben, um eine hohe Genauigkeit der Kraft- bzw. Drehmomentberechnungen zu gewährleisten. Wenn in *"smartFEM Settings - General"* die manuelle Eingabe von *"Min. Rotation Steps"* freigegeben wurde, kann auch eine beliebige benutzerdefinierte Schrittweite angegeben werden.

- Cogging Torque Period x^omech Rastmomentperiode in ^omech.
- BEMF Period x°mech Periode der induzierten Spannung in °mech.
- Maximum Number Of Steps x
 Maximale Anzahl der Berechnungsschritte je Periode. Es werden 2 Perioden gerechnet.

Calculation Parameter

- "Movement Type"

Es kann zwischen der Berechnung über die gesamte Periode oder einen Teilbereich der Periode gewählt werden. Bei Angabe eines Teilbereiches werden nur Cogging Torque und Flux berechnet.

- "Permeability Mode"

Hiermit werden die Berechnungen in FEMAG gesteuert. Bei Auswahl von *"Restored"* werden die Berechnungen bei jedem Schrittwinkel mit wischenschrittergebnis "Null" gestartet. Bei *"Actual"* wird mit dem Ergebnis der vorangegangenen Schrittwinkels gestartet. Dies hat einen Einfluss auf die Anzahl Iterationen und ggfs. auch auf die Genauigkeit der Rechenergebnisse. Das muss vom Anwender individuell bewertet und gewählt werden. *"Restored"* ergibt auf alle

Fälle sehr gute Ergebnisse, benötigt aber u.U. erheblich mehr Iterationen und damit Rechenzeit.

- "Number of Calculation Steps per period" Die Berechnung von Cogging Torque + BEMF erfolgt über zwei Cogging Torque Perioden. Die Vorgabe des minimalen Rotordrehwinkels erfolgt in Abhängigkeit der Periodenlänge, um die Rechenzeiten in einer zur Genauigkeit des Kurvenverlaufs vertretbaren Größe zu halten.
- "Convergation Accuracy"
 Abbruchbedingung für die Berechnungsgenauigkeit der Permeabilitätsänderungen in FEMAG.
- "Motor Length"
 Motorlänge ohne Überhänge = Länge des Luftspalts (siehe auch "3.2.4 Relative Length")
- "Skewing"

Hiermit werden die Auswirkungen einer Optimierung mittels Schrägung von Rotor oder Stator berechnet. Angegeben werden der Gesamtwinkel der Schrägung und die Anzahl der Schrägungsschritte:

Skew Angle	0 = keine Schrägung n = Schrägung in °mech über die gesamte Motorlänge
Number Of Skew Steps	 0 = keine Schrägung 1 = kontinuierliche Schrägung über den angegebenen Winkel n = Anzahl gegeneinander versetzter Blechpakete, das 1. Blechpaket befindet sich immer in der Position 0°mech !
	Beispiel: Skew Angle = 15 °mech Number of Skew Steps = 4 Winkelversatz der Blechpakete zueinander = 15 °mech / (4-1) = 5 °mech
Operational Speed	

Operational Speed
 Nenndrehzahl des Motors in Umdrehungen pro Minute.

Winding Connection
 Wicklungsschaltung "Stern" bzw. "Dreieck".

"Apply, Exit, Reset Results"

Mit *"Reset Results"* werden vorherige berechnete Ergebnisse gelöscht, mit *"Apply"* werden die eingegebenen Daten übernommen und das Fenster geschlossen, mit *"Exit"* wird das Fenster geschlossen ohne dass die eingegebenen Daten zu übernommen werden.

	Operati	onal Speed	3000 rpm
	Winding	Connection	Star
	<u> </u>		
Apply		Exit	Reset Results

Abb. 82: "Apply, Exit" Motor Parameters

Sofern das Preprocessing bereits durchgeführt wurde, kann nun die Berechnung mit Betätigung der Schaltfläche "*Calculation"* gestartet werden.

Die Berechnungsergebnisse werden als Grafiken dargestellt. Sowohl Grafiken als auch die numerischen Ergebniswerte können über den Zwischenspeicher in andere Anwendungen kopiert werden.

Abb. 83: Results - Ergebnisse Cogging Torque

Übersicht aller der nach einer "*Cogging Torque + BEMF Calculation*" als Graphen darstellbaren Ergebnisse:

Cogging & BEMF Calculation
 Cogging Torque
 FFT Amplitude of Harmonics for Cogging Torque
 FFT Amplitude of Harmonics for Flux of Phase U
 BEMF per Phase
 FFT Amplitude of Harmonics for BEMF of Phase U
 BEMF Line to Line
 FFT Amplitude of BEMF Line to Line UV
 ke Line to Line
 Nominal Torque & Inductance Calculation
 Dynamic Calculation
 Expected Values

Da smartFEM den Fluss je Nut und Rotorposition ermittelt und speichert, werden bei Änderungen von Wickelschema, Motorlänge, Skew Angle, Skew Steps und Speed die Ergebnisse ohne weitere FEM-Rechnung ermittelt und unmittelbar nach Eingabe der geänderten Parameter dargestellt.

Abb. 84: Beispiel für Beeinflussung der BEMF durch Schrägung

3.6.3 Expected Values

Um eine schnelle Voraussage des zu erwartenden Drehmoments treffen zu können, wird das Drehmoment analytisch auf Basis der zuvor mittels FEM berechneten BEMF als "Expected Value" ermittelt und angezeigt.

Abb. 85: Results - Expected Values

Die Berechnung erfolgt je nach Auswahl mit konstantem Strangstrom, sinusförmigem Strangstrom, trapezförmigem oder benutzerspezifischem Phasenstrom. Die Auswahl kann in dem Menue *"Nominal Torque + Inductance Calculation" "Coil Exitation - Current Parameters"* getroffen werden. Da keine zusätzliche FEM-Berechnung notwendig ist, werden die Ergebnisse unmittelbar angezeigt.

Übersicht aller der nach einer *"Cogging Torque + BEMF Calculation"* unter *"Expected Values"* als Graphen darstellbaren Ergebnisse:

Cogging & BEMF Calculation
 Nominal Torque & Inductance Calculation
 Dynamic Calculation
 Expected Values
 Cogging Torque
 Cogging Torque
 Currents per Phase
 Durents per Line
 BEMF per Phase

3.6.4 Nominal Torque + Inductance

Die Berechnung des Nominal Torque erfolgt in der Weise, dass in jeder Rotorposition die Drehmomente in unbestromten und in bestromten Zustand mittels FEM berechnet werden. Anschließend wird das Nominal Torque durch Differenzbildung ermittelt. Die Einstellung der Berechnungsparameter erfolgt in *"Motor Parameters"*.

Motor Parameters			• X
Options Post-Processing Add-ons	elmoCAD		
Calculation Types	Calculation Parameters		
C Cogging Torque + BEMF	Movement Type:	Full Period C Range	
 Nom. Torque + Inductance Losses 	Permeability Mode:	• Restored C Actual	
O Dynamic Model Parameters Info	Number of Calculation Steps Per Perio	d 24	
Min. Rotation Step: User 💌 °mech	Convergence Accuracy	0.005	Р
Rot. Step: 0.11111112 °mech	Motor Length [Lmot]	140	mm
Cogging Torque Period: 1,333°mech	Skew Angle	0	°mech
BEMF Period: 24°mech	Number of Skew Steps	1	
Phase Shifts - from Cogging Calc.	Operational Speed	1100	rpm
Calculate Phase Shifts Reset	Winding Connection	Star 💌	
Phase U 260 °el	Stator Coil Excitation - Current Paramet	ers	
Phase V 140 °el	Sinus Shape Line Current 💌	Amplitude 250	Α
Phase W 20 °el	PI	hase Shift 0	°el
	Le	ad Phase None 💌]
Apply	Exit Reset F	Results	

Abb. 86: Motor Parameters - Nominal Torque + Inductance

3.6.4.1 Model Parameters Info

- Minimum Rotation Step x°mech
 Minimaler Drehwinkelschritt des Rotors in °mech. (entsprechend 3.6.2)
- Cogging Torque Period x^omech Rastmomentperiode in ^omech.
- BEMF Period x°mech Periode der induzierten Spannung in °mech.
- Maximum Number Of Steps x Maximale Anzahl der Berechnungsschritte.

3.6.4.2 Phase Shifts

from Cogging Torque + BEMF Calculation

- from Nominal Torque + Inductance Calculation

- Bei Durchführung der "*Cogging Torque* + *BEMF Calculation"* werden auch die Phasenlagen zwischen den einzelnen Wicklungen ermittelt, die dann bei Auswahl der "*Nominal Torque* + *Inductance Calculation"* angezeigt werden.
- Bei Auswahl der "Nominal "Torque + Inductance Calculation" werden die Phasenlagen angezeigt, sofern vorher eine "Cogging Torque + BEMF Calculation" durchgeführt wurde.

Wenn keine "*Cogging Torque + BEMF Calculation"* durchgeführt *wurde*, wird "*Phase Shifts: Not Defined"* angezeigt.

Phase Shifts - from Cogging Calc.				
Calculate Phase Shifts Reset				
Phase U	260	°el		
Phase V	140	°el		
Phase W	20	°el		

Ist der Haken "Calculate Phase Shifts" gesetzt, werden

vor der Nominal Torque Rechnung automatisch die Phasenlagen neu berechnet.

Dazu wird für jede Phase eine Drehmomentberechnung mit Konstantstrom vorgenommen. Die Winkel (°el) der Maxima der Drehmomente entsprechen den Lagen der jeweiligen Phase. Anschließend wird die eigentliche *"Nominal Torque + Inductance"* Berechnung durchgeführt.

- Bei den Maschinentypen *"Switched Reluctance"* und *"Universal Motor"* wird *"Phase U/V/W: not defined"* angezeigt. Da diese Maschinentypen keine Magnete besitzen, kann auch keine BEMF und damit auch nicht die Phasenlagen der Wicklungen berechnet werden. Diese werden dann vor Durchführung der eigentlichen Drehmomentberechnung wie vorher beschrieben ermittelt. (Siehe auch 6.3 Switched Reluctance Motor)

3.6.4.3 Calculation Parameters

- "Movement Type"

Es kann zwischen der Berechnung über die gesamte Periode oder einen Teilbereich der Periode gewählt werden.

- "Permeability Mode"

Hiermit werden die Berechnungen in FEMAG gesteuert. Bei Auswahl von *"Restored"* werden die Berechnungen bei jedem Schrittwinkel mit Zwischenschrittergebnis "Null" gestartet. Bei *"Actual"* wird mit dem Ergebnis der vorangegangenen Schrittwinkels gestartet. Dies hat einen Einfluss auf die Anzahl Iterationen und ggfs. auch auf die Genauigkeit der Rechenergebnisse. Das muss vom Anwender individuell bewertet und gewählt werden. *"Restored"* ergibt auf alle Fälle sehr gute Ergebnisse, benötigt aber u.U. erheblich mehr Iterationen und damit Rechenzeit.

 "Number of Calculation Steps per period"
 Die Berechnung von Cogging Torque + BEMF erfolgt über zwei Cogging Torque Perioden. Die Vorgabe des minimalen Rotordrehwinkels erfolgt in Abhängigkeit der Periodenlänge, um die Rechenzeiten in einem zur Genauigkeit des Kurvenverlaufs vertretbaren Größe zu halten.

- "Convergation Accuracy" Abbruchbedingung für die Berechnungsgenauigkeit der Permeabilitätsänderungen in FEMAG.
- "Motor Length"
 Aktive axiale Luftspaltlänge

- "Skewing"

Hiermit werden die Auswirkungen einer Optimierung mittels Schrägung von Rotor oder Stator berechnet. Angegeben wird der Gesamtwinkel der Schrägung und die Anzahl der Schrägungsschritte:

Skew Angle	0 = n =	keine Schrägung Schrägung in °mech über die gesamte Motorlänge
Number Of Skew Steps	0 = 1 = n =	keine Schrägung kontinuierliche Schrägung über den angegebenen Winkel Anzahl der Blechpakete, das 1. Blechpaket befindet sich immer in der Position 0 °mech!

Beispiel:

Skew Angle = 15 °mech Number Of Skew Steps = 4 Winkelversatz der Bleche zueinander = 15 °mech / (4-1) = 5 ° mech

Achtung: in der aktuellen smartFEM Version werden die Nominal Torque Berechnung und die Verlustberechnung nur für Skew Angle = 0° durchgeführt !

- "Operational Speed" Nenndrehzahl des Motors in Umdrehungen pro Minute.
- "Winding Connection" Wicklungsschaltung "Stern" bzw. "Dreieck".

3.6.4.3.1 Skewing bzw. Rotor-/Statorschrägung

Die Schrägung der Rotorpole bzw. Statorzähne um eine Polteilung ist ein probates Mittel um Rastmomente und die Harmonischen der induzierten Phasenspannungen zu minimieren.

Neben der kontinuierlichen Schrägung kann z.B. der Rotor auch aus mehreren Scheiben in axialer Richtung aufgebaut werden (diskrete Schrägung):

- Dabei werden die einzelnen Scheiben gegeneinander um einen Winkel = Schrägungswinkel/Anzahl Scheiben verdreht.
- Die Schrägung mit unendlich vielen unendlich dünnen Scheiben entspricht dann der kontinuierlichen Schrägung.

Die Auswirkungen der Schrägung auf Rastmomente, etc. kann einfach in einem Excel-Tabellenblatt durch Superposition ermittelt werden.

In smartFEM werden die Ergebnisse nach Eingabe von Schrägungswinkel und Anzahl Scheiben (Anzahl Schritte) direkt angezeigt. Für kontinuierliche Schrägung ist die Anzahl Schritte = 1 einzugeben.

Definition:

3.6.4.4 Stator Coil Excitation - Current Parameters

Es können verschiedene Stromkurvenformen eingegeben werden:

- konstanter Strom mit Angabe der Amplitude

tor Coil Excitation - Current Parar	neters		10,0 8,0					
Constant Line Current	Phase U 10	А	6,0 4,0					
Sinus Shape Line Current d-lq Effective Phase Current Grapezoid Shape Phase Current	Phase V -10	A	2,0 0,0 -2,0 0,0	20,0 4	40,0 60,0	80,0 1	00,0 120	,0 α[°n
Jser Defined Phase Current	Phase W 0	A	-4,0					

Abb. 87: Stator Coil Exitation - Constant Line Current

Wenn die Schaltfläche "Calculate Phase Shifts" betätigt wird, wird vor der eigentlichen Nominal Torque Rechnung die Lagen aller Phasen ermittelt.

 sinusförmiger Strom mit Angabe von Amplitude und Phasenverschiebung zwischen Strom und BEMF je Strang:

Stator Coil Excitation - Current Par	ameters		
Sinus Shape Line Current 💌	Amplitude 10 A	A	
ReCalculate Phase Shifts	Phase Shift 0 °el	°el	
	Lead Phase None	•	

Currents per Phase

Abb. 88: Stator Coil Exitation - Sinus Shape Line Current

- Id-Iq mit Angabe der Ströme in d- und q-Achse:

Id-Iq Effective Phase Cure Id	
ReCalculate Phase Shifts Iq 10 A	
Lead Phase None	

Abb. 89: Stator Coil Exitation - Id-Iq Effective Phase Current

 trapezförmige Kurvenform der Phasenströme mit Angabe von Amplitude, Phasenverschiebung und Funktionsbreite. Die Funktionsbreite ist der Bereich, in dem die Amplitude 100% beträgt. Dazwischen werden Flanken mit linearem An- bzw. Abstieg dargestellt:

Stator Coil Excitation - Current P	arameters			i [A] .	Currents per Phase
Trapezoid Shape Line Curr 💌	Amplitude	10	A	8,0	
ReCalculate Phase Shifts	Phase Shift	0	°el	4,0	
	Funct. Width	80	%	0,0 0,0 30,0 -2,0	60 0 90,0 120,0 150,0 180,0 α [°mec
	Lead Phase	None 💌		-6,0	
					Currents per Line
				iL [A]	

Abb. 91: Stator Coil Exitation - Trapaziod Shape Line Current

"Lead Phase"

Für den Fall, dass sich aus Geometrie und/oder Wickelschema nicht symmetrische Phasenströme bzw. Phasenlagen der BEMF ergeben, die eine Phasenverschiebung ungleich 360°/Gesamtanzahl_Phasen aufweisen. Kann eine Phase als Lead bzw. führend festgelegt werden. Die Ströme der anderen Phasen werden dann automatisch so definiert, dass sich eine gleiche Phasenverschiebung zwischen allen Strömen ergibt. Dies ist notwendig, um das Verhalten von gebräuchlichen Steuerungen zu simulieren, die keine unsymmetrischen Phasenverschiebungen erzeugen können.

Für den Fall, dass keine Lead Phase ausgewählt wird, werden die Phasenverschiebungen zwischen den Phasenströmen so definiert, wie sie sich aus der unsymmetrischen BEMF ergeben.

- benutzerspezifische Kurvenformen der Phasenströme:

Stator Coil Excitation - Current Parameters		
User Defined Phase Currer	Edit Shape	
Calculate Phase Shifts		

Abb. 92: Stator Coil Exitation - User Defined Phase Current

Über die Schaltfläche "*Edit Shape"* können die entsprechenden Einstellungen vorgenommen werden. Als Default wird eine Tabelle mit sinusförmigem Stromverlauf angelegt.

File	Options Current	Options					
	Angular Position, °el Complete 360°	lph <u>.</u>	_U(A)	lph_V(A)	lph_W(A)	Î	
1	0	0		-8,66	8,66		
2	1	0,175		-8,746	8,572		
3	2	0,349		-8,829	8,48		
4	3	0,523		-8,91	8,387		
5	4	0,698		-8,988	8,29		
6	5	0,872	😵 Pha	se Vector Curren	ts		
7	6	1,045	File	Options			
8	7	1,219	0000	1.0152300-02023			
9	8	1,392			Phase Vec	tor	Currents
10	9	1,564	lph(A) †			
11	10	1,736	1	20			
12	11	1,908		80	~ ~	-	
13	12	2,079		40	\sim		X
14	13	2,25		4,0			
15	14	2,419		00 50,0	100,0 150,0 28	0.0 /	250.0 300 × 350 0 400.0 α(°
_	10	231	1	4,0	X	X	X
				B,0			
			-13	2,0 •			
					Iph U	- Iph	V lph W
						-18-11_	

Abb. 93: Stator Coil Exitation - Phase Vector Currents Input Table

Der Benutzer kann die in der Tabelle enthaltenen Werte direkt verändern, Einstellungen über "Options" vornehmen oder mit Copy und Paste eine in einem anderen Tool erstellten Wertetabelle übernehmen.

Pha	se ¥ector (urrents Input Table						1>
File	Options	Current Options						
	Angular Comple	Initial Values FFT Sampling	۲ ۲	lph <u>.</u>	_V(A)		lph_W(A)	
1	0	Alian with BEME				8,66		
2	1	Symmetric Current		6		8,572		
3	2	Phase Shift			Global	1		
4	3	Global Amplitude Ch	ange		Phase II			
5	4	0,698			Phase V			
6	5	0,872	-9,06		Phase W			
7	6	1,045	-9,13	5	111036 W	0,00		

Abb. 94: Phase Vector Currents Input Table - Current Options

Mit "Current Options" sind folgende Einstellungen möglich:

"Initial Values":	Speichern oder Laden der gespeicherten Wertetabelle
"FFT Sampling":	Abtastrate für die Fourierzerlegung, Default = 1.000
"Align with BEMF":	Einstellung der Phasenlagen der Stromkurvenformen entsprechend der BEMF je Phase
"Symmetric Current":	In Phase U eingegeben Stromwerte werden in die anderen Phasen mit einer Phasenverschiebung von 120° und 240° kopiert.
"Phase Shiff":	Es kann eine Phasenverschiebung für alle oder jede Phase einzeln eingegeben werden.

"*Global Amplitude Change*": Die Amplituden werden mit dem eingegeben Faktor multipliziert.

"Apply, Exit, Reset Results"

Mit *"Reset Results"* werden vorherige berechnete Ergebnisse gelöscht, mit *"Apply"* werden die eingegebenen Daten übernommen und das Fenster geschlossen, mit *"Exit"* wird das Fenster geschlossen ohne dass die eingegebenen Daten zu übernommen werden.

	Operati	ional Speed	3000 rpm
	Winding	g Connection	Star
l			
Apply		Exit	Reset Results

Abb. 95: "Apply, Exit, Reset Results" Motor Parameters

3.6.5 Calculation

Sofern das "*Preprocessing"* bereits durchgeführt wurde, kann nun die Berechnung mit Betätigung der Schaltfläche "*Calculation"* gestartet werden. Nach deren Durchführung können unterschiedliche Graphen dargestellt werden:

Settings Rotor Stator Material Winding Defined Motor Parameters Calculation x=8,0437, y=-1,7600E-01	i smarth±M*** Core1 - MotorDesignTemp_Zmot							
Retor Stator Material Winding Defined Motor Parameters Calculation x= 8.0437, y= -1,7600E-01) 💕 🔒 💹 🚳 🔮							
Rotor File Options RMS AVG Values Stator Results Overview Image: Dependent Values Image: Dependent Values Vinding Defined Image: Dependent Values Material Image: Dependent Values Vinding Defined Image: Dependent Values Motor Parameters Calculation x= 8,0437, y= -1,7600E-01	iettings	S Plotted Graph Torque With Applied Current						
Stator Image: Big the state is a s	Rotor	File Options RMS AVG Values Results Overview						
Material Winding Defined Motor Parameters Calculation x= 8,0437, y= -1,7600E-01 X-Axis Prefix ~ Y-Axis Prefix ~ 1	Stator	P □ Nominal Torque & Torque With Applied Current T [Nm]						
Winding Defined 0,9 0,9 0,0	Material							
Motor Parameters 0,3 0,3 0,0 0	Winding Defined	0,9						
Calculation x= 8,0437, y= -1,7600E-01 X-Axis Prefix • Y-Axis Prefix • γ:	Motor Parameters	0,3						
	Calculation	v zv 4u 60 80 100 T20 a ["mech] x=8,0437, y= -1,7600E-01 X-Axis Prefix Y-Axis Prefix						

Abb. 96: Ergebnisdarstellung Nominal Torque mit sinusförmigem Strom

Übersicht aller der nach einer "Nominal Torque + Inductance Calculation" als Graphen darstellbaren Ergebnisse:

Abb. 97: Übersicht Calculation Results

Sofern anschließend Skewing Parameter oder Motorlänge verändert werden, werden auch alle Kräfte und Drehmomente neu berechnet, ohne dass erneute FEM-Berechnungen erfolgen müssen. Nach Änderungen der Geometrie

3.6.6 Dynamic Calculation

Dynamische Berechnungen können für Motoranlauf und stationären Betriebszustand durchgeführt werden. Die Berechnungen werden auf Basis von Ersatzschaltbildern analytisch im Zeitschrittverfahren durchgeführt, wobei die Induktivitäten auch in Co-Simulation mit FEMAG ermittelt werden können.

🚱 Motor Parameters			
Options Post-Processing			
Calculation Types	Calculation Parameters		
C Cogging Torque + BEMF	Motor Length [Lmot]	100	mm
C Nom. Torque + Inductance			
₩ Losses	Skew Angle	0	°mech
 Dynamic 		1	
Run Modes	Number of Skew Steps	ļi	
C Steady State	Winding Connection	Star 💌	
G Chattle		n Barnen en	
• Start Up	Dynamics Parameters		
Phase Parameters Info	Input Voltage	50 1	V
R_U= 155,3 mΩ	Edit	Flectronics	
R V= 155.3 mΩ		Libbuonido	
	Block Commutation	120° 💌	° el
R_W= 155,3 ms2	Control Firing Angle Delay	0	• al
L_U= 190,65 µH		10	CI
L_V= 190,65 μH	Start Up Rotor Position	0	°mech
L_W= 190,65 μH	Phase Parameters		
System Info	Added Resistance Per Phase	0	Ω
Line to Line BEMF= 47,26 V (For Nominal Speed)	Added Inductance Per Phase	0	н
Estimated Jr=0,5861E-04 kgm ²	Phase Inductances C. Co	oupled to Femag 💿 User De	efined
	Inductance /mm /NTurns ² Average	6,25973713652941E-09	H/mm
	Calculation Stopping Criteria		
	I ✓ Torque Steady State Reaching	1	%
	☐ Stop on Speed	0	rpm
	Stop on Time	0	ms
	Stop at Botor Position	0	°mach
	Load Parameters	1 m	
	Rotor Moment of Inertia	0,000586	kgm²
	Load Torque	1	Nm
		.	
A¢	sults		

Abb. 98: Motor Parameter für dynamische Berechnung stationären Betriebszustandes
"Run Modes"

- "Steady State" für den stationären Betriebszustand
- "Start Up" für den Motoranlauf.

"Phase Parameters Info"

- Widerstände RU, RV, RW und Induktivitäten LV, LU, LW aller Wicklungen, die zu einer Phase gehören
- Induzierte Klemmenspannung
- Trägheitsmoment des Rotors

"System Info"

- Line to Line BEMF (for Nominal Speed)
- Estimeated Jr

"Calculation Parameters"

- "Motor Length"
 Motorlänge ohne Überhänge
- "Skewing"

Hiermit werden die Auswirkungen einer Optimierung mittels Schrägung von Rotor oder Stator berechnet. Angegeben wird der Gesamtwinkel der Schrägung und die Anzahl der Schrägungsschritte:

"Skew Angle"	 keine Schrägung Schrägung in °mech über die gesamte Motorlänge 	
"Number Of Skew Steps'	 keine Schrägung kontinuierliche Schrägung über den angegebenen Winkel Anzahl der Blechpakete, das 1. Blechpaket befindet sich immer in der Position 0 °mecl 	h!
	eispiel: kew Angle = 15 °mech lumber Of Skew Steps = 4 Vinkelversatz der Bleche zueinander = 15 °mech / (4-1) = 5 ° mec	ch
"Winding Connection"		

"Winding Connection"
 Wicklungsschaltung "Stern" bzw. "Dreieck".

Dynamics Parameters

"Input Voltage"
 Maximalwert einer angelegten konstanten Phasenspannung.

- Use Phase Voltage

Anstatt der konstanten Phasenspannung *"Input Voltage"* können auch benutzerspezifische Phasenspannungen verwendet werden. Dabei können je Phase Verlauf, Amplitude und Phasenwinkel beliebig eingestellt werden. Diese Funktion kann derzeit nur im *"Run Mode" "Steady State"* benutzt werden.

🚱 Pha	se Vector Voltages Inp	out Table			
<u>F</u> ile	Options Voltage	Options			
	Angular Position, °el Complete 360°	Vph_U [V]	Vph_V [V]	Vph_W [V]	
1	0	-15,28270373	26,27748645	-10,87861804	
2	24	-25,00092787	24,80345184	0,230849397	
3	48	-26,87456778	17,13490336	9,646020119	
4	72	-25,82682383	4.822252446	20.91308218	
5	96	-22,0224502	Phase Vector Voltages	A	
6	120	-10,8787044	File Options RMS A	AVG Values	
7	144	0.23131916			
8	168	9,64618239		Phase Vecto	or Voltages
9	192	20,9120919	Vph [V]		
10	216	26,8586339	30.0		
11	240	26,2782384	24.0		\sim
12	264	24,8039290	18.0		
13	288	17,1349381	12.0	X	X
14	312	4,82225017	6.0		
15	336	-4,80140532	0,0		
16	360	-15,2827037	-6.0 40	80 120 160	200 240 280 320 360 α [°el]
		x	-12,0 -18,0 -24,0 -30,0 Vph_ = -66,5462, y= -19,8860	_U [V] — Vph	_V [V] Vph_W [V] X-Axis Prefix • Y-Axis Prefix • ;;;

Abb. 99: Verwendung von benutzerspezifischen Phasenspannungen

Mit "*Voltage Options"* können verschiedene Funktionen zur Anpassung der Spannungen vorgenommen werden:

😵 Phase Vector Voltages Input Table										
<u>F</u> ile	<u>O</u> ptions	Voltage	Options			_				
	Angular	Initi	al Values		•	VDA				
	Comple	FFT Sampling				1_v [v]				
1	0	Align with BEMF				3645				
2	24	Symmetric Voltage			5184	(
3	48	Pha	Phase Shift				9			
4	72	Glo	bal Amplitude (Chang	e	2446				
5	96	_	-22,02245022		-4,8008	59379	1			
6	120		-10,87870448		-15,283	26566	1			

Abb. 100: Voltage Options

- "Initial Values":	Save, Restore
- "FFT-Sampling":	Eingabe eines Wertes, Default = 1.000
- "Align with BEMF":	Einstellung des gleichen Phasenwinkels wie BEMF
- "Symmetric Voltage":	Einstellung der Phasen V und W wie U jeweils um120°el versetzt
- "Phase Shift":	Eingabe eines Phasenwinkels für alle Phasen gleich oder je Phase unterschiedlich
- "Global Amplitude Change":	Eingabe eines Multiplikationsfaktors zur Veränderung des Scheitelwertes der Spannung.

Mit *"Electronics"* werden die Widerstände der Transistoren und Dioden des Inverters im Ersatzschaltbild und die Zeitschritte der Berechnungen vorgegeben. Damit kann mit guter Annäherung ein beliebiges PWM-Signal für die Eingangsspannung des Motors in 3-phasiger Sternschaltung verwendet werden.

Besistance of switch			
		0,004	Ohm
Resistance of diode		0,005	Ohm
Differentiation Time S	itep	1E-06	Sec

Abb. 101: Einstellung der Parameter für das Invertermodell

"Block Commutation"

Eingabe des elektrischen Winkels der Kommutierungsdauer 120°el oder 180°el.

- "Control Firing Angle Delay"
 Verzögerungswinkel für den Kommutierungszeitpunkt.
- "Stop Calculation Criteria"

Abbruchbedingungen für die Beendigung der Berechnungen sind mit "Oder" verknüpft und können ausgewählt und parametriert werden.

Calculation Stopping Criteria		
✓ Torque Steady State Reaching	1	%
✓ Stop on Speed	2500	rpm
Stop on Time	0	ms
Stop at Rotor Position	0	°mech

Abb. 102: Abbruchbedingungen für dynamische Berechnungen

Phase Parameters

- "Added Resistance Per Phase" Benutzerspezifischer Widerstand, der als Konstante zum Phasenwiderstand addiert wird.
- "Added Inductance Per Phase"
 Benutzerspezifische Induktivität, die als Konstante zur Phaseninduktivität addiert wird.
- "Phase Inductances" "Coupled to FEMAG": die Induktivitäten werden rotorpositionsspezifisch über eine FEM-Berechnung mittels Co-Simulation durch FEMAG ermittelt.

"User Defined":

die Induktivität wird aus dem Wicklungsschema unabhängig von der Rotorposition berechnet und als Konstantwert vorgegeben.

Die Berechnungsergebnisse werden als Grafiken dargestellt. Sowohl Grafiken als auch die numerischen Ergebniswerte können über den Zwischenspeicher in andere Anwendungen kopiert werden (siehe auch 0)

Abb. 103: Dynamische Berechnung Drehmomentverlauf versus Rotorpostion

Übersicht aller der nach einer "Dynamic Calculation" als Graphen darstellbaren Ergebnisse:

3.6.7 Postprocessing - Forces and Torque

3.6.7.1 Kraftberechnung

Grundlagen

Kräfte in einem Segment bestehend aus n quadratischen Netzelementen

Anmerkung: der Kraftvektor F muss nicht unbedingt im Schwerpunkt des Segmentes liegen!

- F = Kraftvektor
- FT = tangentiale Komponente des Kraftvektors
- FN = normale (radiale) Komponente des Kraftvektors
- FNx = x-Komponente des Normal-Kraftvektors
- FNy = y-Komponente des Normal-Kraftvektors

Abb. 104: Grundlagen von Kraftvektoren

smartFEM ermöglicht die Berechnung der im mittleren Luftspaltlayer entstehenden Tangential- und Normalkräfte in wählbaren Segmenten.

Abb. 105: Kraftberechnungen mit smartFEM

Beispiel: Ergebnisse einer Kraftberechnung für je einen Motor mit zentrischem und exzentrischem Rotor:

Abb. 106: Beispiel für Ergebnisse einer Kraftberechnung

Für die Parametereingabe und Ergebnisausgabe kann in dem Fenster "*Motor Parameters"* über die Menüauswahl "*Postprocessing"* das Fenster "*Force Calculation"* geöffnet werden. Folgende Parameter können eingegeben werden:

- "Arc Starts on"
 Beginn des Bereichs f
 ür die Kraftberechnungen
- "Lenght of Arc" Länge des Kreisbogens in dem die Kräfte berechnet werden

Alle Winkel werden in Polar-Koordinaten angegeben

- "Number of Segments"

Anzahl der jeweils gleichlangen Kreisbogensegmente, für die jeweils die Nominal- und Tangentialkraft berechnet wird

Auswahl "Cogging Torque" oder "Nominal Torque"
 Festlegung, welche Feldberechnungsergebnisse als Basis für die Kräfteberechnungen verwendet werden. Bei Auswahl von "Nominal Torque" werden die angegebenen Ströme berücksichtigt.

Die Ergebnisse werden in einer Tabelle angezeigt und können über das Menü "Options"-→"Copy Results" über den Zwischenspeicher in andere Anwendungen kopiert werden.

Motor Parameters		1				X					
Options Post-Processing Add-o	ins										
Calculation Forces and Torque	Iculation F	arameters									
Cog Losses	overnent	Force Calculation	* 141	-	Test I						
C Nom. Torque + Inductance	Permerkil	File Options Pl	ots								
Losses	Permeabli	Calculation Parameters					- ·				
C Dynamic	Number of	Arc Starts on:	94			°mech	Segments	Relative to			
Model Parameters Info							• •	Stator			
Min. Rotation Step: 1 • °mech	Converger	Length of Arc	52			'mech	C F	Rotor			
Cogging Torque Period: 30°mech	Motor Len	Number of Segments	1								
BEMF Period: 180°mech	Skew Ang	Data from Calculation	Type gging Torq	ue C Nomir	al Torque		Calcu	ulate			
Maximum Number of Steps: 30 2 PERIODS CALCULATED	Number of	····· Seg 1(94°->146°)			Seg	1(94°->"	46°)				
	Operation		Step	Rotor	FT [N]	FN [N] Angle	e_θ ch1	Torque		
			1	0	-6,5153	75,0226	122,49	941 -0	,1042		
	Winding C		2	1	-6,7752	73,3935	123,01	44 -0	,1084		
			3	2	-6,9433	71,7384	123,54	-0	,1111		
			4	3	-7,0328	70,0591	124,09	974 -0	0,1125		
A	pply		5	4	-7,0537	68,3779	124,64	-0),1129		
			6	5	-7,0112	66,6876	125,20	028 -0	,1122		
			7	6	-6,9056	65,0157	125,75	65 -0),1105		
Abb. 107: Beispiel 1 - Kräftel	perechnun	g in	Force	Calculation	# father	. 7	Trange				• ×
einem	Segment	0	File	Options P	ots						
	•		Calculati	on Parameters	,			X		Palativa	
			Arc Star	ts on:	94			°mech	Segments	Relative	10
			Length	of Aro	52			°mach	(• S	tator	
			Lengun	JI AIC	192			mech	CR	otor	
		-	Number	of Segments	5						
			Data fro	m Calculation	Туре						
				Co	gging Torque	C Nomin	al Torque		Calcu	late	
			Seg 1	(94°->104,4°)			Seg 3 Ra	-(114,8°->12 dius=16mm	25,2°)		
			Seg 2	-(104,4 ->114, -(114,8°->125,	Step /	Rotor Position	FT [N]	FN [N]	Angle [°mec	_0 :h]	Torque [Nm]
			Seg 4	(125,2°->135, (135,6°->146	1 0)	-0,0109	17,3141	120,00	05	-0,0002
					2 1	I	-0,0147	17,3034	120,00	06	-0,0002
					3 2	2	-0,0193	17,2962	120,00	05	-0,0003
					4 3	3	-0,0267	17,2882	120,00	07	-0,0004
Abb. 108: Beispiel 2 - Kräftel	perechnun	g in fünf			5 4	Ļ	-0,0406	17,2801	120,00	07	-0,0006
Segme	enten				6 5	5	-0,0603	17,2705	120,00	08	-0,001

3.6.7.2 Torque

Die Berechnungsergebnisse des Drehmoments in *"Results"* werden von FEMAG auf drei signifikante Stellen gerundet. Da dies manchmal bei Auswertungen von Drehmomentschwankungen zu ungenauen Ergebnissen führt, wird das Drehmoment mit dieser Funktion mit einer höheren Anzahl der signifikanten Stellen berechnet und ausgegeben.

Dazu wird in *"Postprocessing - Forces and Torque - Force Calculation"* die Kraftberechnung mit 1 Segment von 0° über eine Länge von 360° gerechnet.

😵 smartFEM - MotorDesignTemp_1.mot		
File View Results Tools Windows Help		
🗅 💕 🖬 💹 🕮 🖉 🖬 🌍		
Settings Rotor Stator Stator Material Winding Defined Motor Outer Diamet(Number of Slots: 9	Motor Parameters Options Post-Processing Calculation Forces and Torque Ubits Force and Torque Image: Comparison of the second	ative to
Calculation Number of Magnets Rot. Step: 1 °mech		

Abb. 109: Postprocessing - Forces and Torque

Anschließend können Plots des Drehmoments und seiner Harmonischen aufgerufen und ausgewertet werden.

Sorce Calculatio	n		
File Options	Plots		
-Calculation Parame	Show Torque Graph		0
Arc Starts on:	Show Torque Harmonics Graph	iech	Segments Relative to
		_	Stator
Length of Arc	360	°mech	C Rotor

Abb. 110: Postprocessing - Drehmomentdiagramm anzeigen

Abb. 111: Postprocessing - Plots von Drehmoment und Harmonischen

Über "*Options - Copy Results*" können die Ergebnisdaten für das Drehmoment und die Luftspaltinduktion z.B. in eine Tabellenkalkulation zu speziellen Auswertungen kopiert werden.

Abb. 112: Postprocessing - Auswahl zum Kopieren der Ergebnisdaten für das Drehmoment

3.6.8 Postprocessing - Berechnung der Verluste (Loss Calculation)

Mit smartFEM können Kupfer-, Eisen- und Magnetverluste im Rotor und im Stator berechnet werden. Die dafür notwendige Ermittlung und Speicherung von Basisdaten erfolgt zusammen mit der *"Nominal Torque + Inductance"* Berechnung, sofern die Auswahl *"Losses"* in *"Motor Parameters"* getroffen wurde.

Calculation Types	Calculation Parameters				
C Cogging Tarque + BEMF	Number of Calculation Steps Per Period	40			
 Nom. Torque + Inductance I Losses Dynamic 	Convergence Accuracy	0,01		-	
Model Parameters Info	Motor Length [Lmot]	100		mm	
Min. Rotation Step: 1 🔹 *mech	Skew Angle	Mot	or Paran	neters	
Cogging Torque Period: 20°mech	Number of Skew Steps	File	Post-Pro	ocessing	
Maximum Number of Steps 120	Operational Speed	Calcu	llation Typ	es —	
	Winding Connection	C	Cogging	Torque -	+ BEMF
	Coil Excitation - Current Parameters	e	Nom. To	rque + Ir	iductance
	Sinus Shape Line Current 💌 Am			Losses	
	Pha	C	Dynamic	K	
					81

Abb. 113: Motor Parameters - Auswahlfeld "Losses"

Mit Auswahl des Parameters *"Losses"* werden die Induktionen für alle Netzelemente je Rotorposition gespeichert, was einen erhöhten Speicherplatzbedarf für das Motormodell zur Folge hat. Dafür kann der Benutzer anschließend die Verluste bei unterschiedlichen Drehzahlen und der Verwendung verschiedener Materialien sehr schnell ermitteln, ohne dass jeweils die länger dauernde *"Nominal Torque + Inductance"* Berechnung ausgeführt wird.

Nach Durchführung *"Nominal Torque + Inductance"* Berechnungen kann über das Menü *"Postprocessing"* die Berechnung der Verluste erfolgen.

Im Fenster *"LossCalculation"* werden die im Menü *"Materials"* ausgewählten Materialdaten angezeigt, die als Basis für alle FEM-Berechnungen dienen. Es können auch andere Materialien ausgewählt werden. Die Verlustberechnung mit diesen Materialien dient jedoch ausschließlich zur überschlägigen Beurteilung, da als Induktion die Werte aus den FEM-Berechnungen mit der in *"Materials"* gewählten

Materialien verwendet werden. Gleiches gilt auch für die Leitfähigkeit der Magnete "Magnets Conductivity".

Als Information werden die Werte der BH-Kurve angezeigt, sobald man mit der Maus auf das (i) zeigt.

e aus den FEIV	I-berechnung	en mit der ir	i "Ivialeriais	gewannen
Loss Calculation	n			
Options Edit	Speed Plots	elmoCAD		
Stator Steel Rotor Steel	State	r Steel	Speed [rpm] 3000,0	
Magnets	Steel			
	Name: TKS_M	_800-65_A 🔽 🔇		
			Type: Soft Iron	
Extra Losses			p=7800kg/m3 H(A/m)	B(T)
Extra Losses	Beispiel1_E	draLosses 💌 🤅	0,0 63.1	0,00
			85,6	0,20
	Calculate Losses	1	97,4 106,2	0,30 0,40
			114,2	0,49

Abb. 114: Verlustberechnung - Parameter

Über *"Speed - Add Speed Range"* können weitere Drehzahlen für die Verlustberechnung angegeben werden.

📀 Loss Calc	ulation	-				
Options	Edit	Speed	Plots	elmoCAD		
Stator Steel		Ad	d Speed		1	Speed [rpm]
Rotor Steel Magnets		Add Speed Range				0
		Delete Selected				500,0
		Conductivity: 625000	625000	S/m	1000,0	
						1500,0
	L					2000,0

Abb. 115: Loss Calculation - Add Speed Range

Loss Calculation	n		
Options Edit	Speed Plots elmoCAD		
Stator Steel	Magnets		Speed [rpm]
Magnets	-Magnets		300,0
	Conductivity: 625000	S/m	600,0
	1,		900,0
			1200,0
Segmentation -			1500,0
Harris Com		<u>a</u>	1800,0
Magnets Segme	entation in 2-Axis:	~	2100,0
Extra Losses			2400,0
		a	2700,0
IV Extra Losse	es Beispiell_ExtraLosses 💌	*	3000,0

Unter "Extra Losses" kann eine Datei *.pex mit Zusatzverlusten (z.B. Reibung, Lüfter, etc.) ausgewählt werden, sofern sie vorher als Textdatei erstellt und im Materialverzeichnis "... \smartFEM\Materials" gespeichert wurde. Die Spaltentrennung muss mit dem Tabulatorzeichen "Tab" erfolgen.

Zusätzlich kann die Anzahl der Magnetsegmente in axialer z-Richtung angegeben werden.

Abb. 116: Verlustberechnung - Magnets Segmentation

ſ	Beis	piel1_ExtraLo	sses - Edi	tor	
	Datei	Bearbeiten	Format	Ansicht	?
	500 500 1000 2000 2500 3000 3500 4000 4500 5000	[rpm] 0 5 11 18 26 35 45 56 68 81 95	Extr	aLosses	[w]

Abb. 117: Verlustberechnung - Beispiel Textdatei.pex

Nach Betätigen der Schaltfläche "*Calculate Losses"* werden die Berechnungen ausgeführt. Während dieser Zeit erscheint die Schaltfläche "*Calculating"*.

Eine laufende Berechnung wird durch Betätigen der Schaltfläche "*Calculating*" wieder abgebrochen.

Abb. 118: Verlustberechnung - Durchführung der Berechnung

Die Ergebnisse der Verlustberechnung werden unmittelbar nach ihrer Berechnung tabellarisch und in Plots über die Drehzahl angezeigt:

- Eisenverluste im Rotor
- Eisenverluste im Stator
- Magnetverluste
- Zusatzverluste
- Kupferverluste in den Wicklungen
- Plots mit den Verlustdichten
- Plots mit den Harmonischen der Rotor- und Statorverluste

Abb. 119: Verlustberechnung - Ergebnisse

3.6.8.1 Polynomkoeffizienten

Für die Verlustkurven können die Koeffizienten (xy und invers yx) von Polynomen 3. bis 7. Ordnung berechnet und über das Clipboard kopiert werden, um mathematische Verlustmodelle in anderen Applikationen zu erstellen.

Abb. 120: Loss Calculation - Polynomkoeffizienten

3.6.8.2 Berechnung der Verluste für Linearmotoren

Die Berechnung von Verlusten erfolgt generell mit Hilfe von *"Fourier Transformationen"*, die nur für periodische Signale zulässig sind. Daher werden die Verluste für Linearmotoren werden nur für periodische Modelle mit negativer oder positiver Periodizität durchgeführt. Aus den in smartFEM

verfügbaren nicht-periodischen Modellen werden für die Verlustberechnung periodische Modelle erzeugt.

Sofern Linearmotormodelle mittels DXF-Import in smartFEM erzeugt werden, muss dies vom Benutzer beim Design im CAD-software berücksichtigen.

Abb. 121: Verlustberechnung - Linearmotoren

3.7 Ld / Lq Identifikation

Für eine feldorientierte Regelung von permanentmagnetisch erregten Synchronmaschinen werden häufig mittels der Park-/Clarke-Transformation ermittelte Tabellen der Ld und Lq Identifikationen verwendet. Diese Tabellen können in smartFEM über die Funktion "*Ld/Lq*" berechnet werden. Als erstes muss dazu eine Tabelle mit Strömen und deren Phasenverschiebungen erstellt werden. Dies kann manuell Zeile für Zeile oder auch parametrisch über den Dialog "*Data - Add - …*" oder parametrisiert erfolgen. Für die Simulation einer feldorientierten Regelung mit dem für die Simulation von Leistungselektronik geeigneten Programm "*CASPOC*" wird diese Tabelle automatisch erzeugt.

	Options Edit	Data			1
Plots	d-Axis=329,999°el :	Add	•	New Set Is_eff and Theta	
	Set No. Is_eff	Remove	•	Parametric Is_eff and Theta	FluxM [V
-La		Currents to Selected Sets	•	New Set Id_eff and Iq_eff	
-	L L	Caspoc	•	Parametric Id and Iq	
MAG					
				Salua All Ex	
POC				Solve All Ex	at

Abb. 122: Ld/Lq - Erzeugung der Datensätze

Die Datensätze können sowohl einzeln als auch alle automatisch nach Betätigung der Schaltfläche "Solve All" berechnet werden.

0-AXIS=550 EI = 2	23,333°mech									q-Axis=	260°el = 17,33	33°mr
Set No. Is_e	eff[A] θ[°e] Id_eff [A]	lq_eff [A]	Ld [H]	Lq (H)	FluxM [Vs]	FluxD [Vs]	FluxQ [Vs]	TorqueFEM [Nm]	TorqueSync [Nm]	Solved	7
27 50	-15	-12,94	48,3	,5606E-03	,5671E-03	.1654E+00	.1582E+00	,2739E-01	359,685	359,502	Yes	1
28 50	0	0	50	.5551E-03	.5633E-03	.1654E+00	.1654E+00	.2817E-01	372,152	372,152	Yes	1
39 75	-75	-72,44	19,41	.5749E-03	.5787E-03	.1656E+00	.1239E+00	.1123E-01	144,857	144,618	Yes	1
40 75	-60	-64,95	37,5	,5731E-03	.5774E-03	,1655E+00	,1283E+00	.2165E-01	279,721	279,245	Yes	1
41 75	-45	-53,03	53,03	.5697E-03	.5753E-03	.1654E+00	.1352E+00	.3051E-01	395,373	394,665	Yes	1
42 75	-30	-37,5	64,95	.5649E-03	.5719E-03	.1653E+00	.1441E+00	.3714E-01	483,786	483,018	Yes	1
43 75	-15	-19,41	72,44	.5581E-03	.5673E-03	,1652E+00	.1543E+00	.4110E-01	539,008	538,425	Yes	1
44 75	0	0	75	,5499E-03	.5616E-03	.1651E+00	.1651E+00	.4212E-01	557,307	557,307	Yes	1
50 100	-75	-96,59	25,88	.5767E-03	.5813E-03	.1655E+00	.1098E+00	.1505E-01	193,306	192,782	Yes	1
51 100	-60	-86,6	50	.5742E-03	.5801E-03	.1654E+00	.1157E+00	.2901E-01	373,306	372,152	Yes	1
52 100	-45	-70,71	70,71	,5699E-03	.5773E-03	,1652E+00	,1249E+00	.4082E-01	527,271	525,613	Yes	1
53 100	-30	-50	86,6	.5636E-03	,5728E-03	.1650E+00	.1368E+00	.4961E-01	644,632	642,838	Yes	1
E4 100	10	25.00	00 50	EEXOF OD	E007E 00	10400.00	10040.00	E 474E 01	717 510	710 110	V	1

Abb. 123: Ld/Lq - Ergebnistabelle

🚱 Ld-Lq Ca	lculation															
Options	Edit Data	Gra	aphs													
d-Axis=350	°el = 23,333°m		Torque	vs 🕨		iq, id=const									q-Axis:	=260°el =
Set No.	ls_eff [A]		Ld	•		id, iq=const		9 (H)	Lq [H	1]	FluxM [Vs]	FluxD [Vs]	FluxQ [Vs]	TorqueFEM [Nm]	TorqueSync [Nm]	Solved
27	50		Lq	•		is, θ=const		6E-03	.5671E	-03	.1654E+00	.1582E+00	.2739E-01	359,685	359,502	Yes
28	50		FluxM	•	~	θ, is=const		To	rque vs t	heta			31-24-1	100.00		23
39	75		Ld-Lq	•	-	19,41	.574	IS File	Ontio	na P	MAS AVG Values	Dehmomi	1			
40	75		FluxD	•		37,5	.573	S1 File	Optio	ns n	uvis AVO values	Polynomia	1			
41	75		FluxQ	•		53,03	.565	97				Torq	ue vs theta		ic-26	
42	75	-30		-37,5		64,95	,564	19						T [Nm]		
43	75	-15		-19,41		72,44	.558	31						2000.0	—— is=50	A
44	75	0		0		75	.549	29						1900.0	is=75	A
50	100	-75		-96,59		25,88	,576	57						1000,0	ia-10	
51	100	-60		-86,6		50	.574	12					-	1600;0	IS=10	UA
52	100	-45		-70,71		70,71	.569	29			-	///		1400,0	—— is=12	25A
53	100	-30		-50		86,6	.563	BE				///		1200.0	is=15	ioa
C 4	100	10		25.00		00 50		-						1000.0	in-47	
											11/			1000,0	IS=17	DA
							-	S		1				800,0	—— is=20	0A
							_							600,0	— is=22	25A
		_					_			Z				400.0	— is=25	OA
										4				200,0	—— is=27	'5A
									-80,0	-70,0	-60,0 -50	,0 -40,0 — Tfer	-30,0 -20,0 n Tsy	-10,0 0,0 0 nc	* [°el]	
								x= -17	,4893, y=	: -349,7	868					.::

Zu der Ergebnistabelle können dann verschiedene Diagramme ausgegeben werden.

Abb. 124: Ld/Lq - Diagram Torque vs. Theta mit is=constant

Zu jeder selektierten Tabellenzeile kann das Phasendiagramm angezeigt werden.

Abb. 125: Ld/Lq - Phasor Diagram

Die Ergebnistabelle kann mittels Dialog "Options - Copy Sets" über den Zwischenspeicher in andere Softwareprogramme übernommen und dort verwendet werden.

Eine für das Programm CASPOC erzeugte Ergebnistabelle wird über den Dialog "*Data - Caspoc - Export File*" in eine xml formatierte Datei gespeichert, die von CASPOC als Look-Up-Tabelle für die Elektroniksimulation verwendet wird.

🔇 Ld-Lq C	alculatio	n							
Options	Edit	Data							
d-Axis=33	0°el = 11	,	Add			۲			
Set No.	ls_eff	I	Remove			•	lq_eff	[A]	Ld [H]
1	3,536	1	Paste Curr	ents to	Set No.1	•	., 16 5E	-16	,3186E-03
2	3,536	Caspoc 🔹		•	Add Sets		ets		
3	3,536	_	-70		-3,322			Export	File
	2 520		00		2.002		1700		1 21705 02

Abb. 126: Ld/Lq - Erzeugung einer Ergebnisdatei für CASPOC

3.8 Berechnung spezieller Effekte

Für die Berechnung und Untersuchung spezieller Effekte (z.B. Rastmoment, das durch einen einzelnen Magneten verursacht wird), gibt es die Möglichkeit, einzelnen Flächenelementen andere Materialeigenschaften zuzuweisen, z.B.:

Abb. 127: Simulationsmodell mit einem Magnet

Achtung:

Dies hat zur Folge, dass das Motormodell nicht mehr den durch die in Rotor- und Statortopologie mit Anzahl der Magnete und Nuten vorgegebenen periodischen Symmetriebedingungen genügt. Die Ergebnisse beziehen sich daher nur auf diesen Spezialfall und können nicht auf das vollständige periodische Simulationsmodell übertragen werden. Ein Pop-Up-Fenster verlangt die Bestätigung.

Die Änderung der Materialeigenschaften einzelner Flächenelemente erfolgt dadurch, dass in der Darstellung "*Geometry*" oder "*Material*" das entsprechende Flächenelement mit der linken Maustaste angeklickt wird bei gleichzeitigem Drücken einer Tastenkombination "*CTRL*", "*ALT*", "*Shift*":

0	CTRL	\rightarrow	Rotor Eise	n
0	CTRL	\rightarrow	Rotor E	ise

- \circ ALT \rightarrow Stator Eisen
- \circ ALT + Shift \rightarrow Magnet
- \circ ALT + CTRL \rightarrow Luft

Question Mode	Changing Material Property Will Delet Results Do You Want To Assign New Property	e Preprocessing Model and
Amm,		Ja Nein

Abb. 128: Änderung der Materialeigenschaften einzelner Flächenelements

Bei Benutzung dieser Funktion erfolgt Hinweis, dass bei Ausführung der Funktion alle Ergebnisse zurückgesetzt werden und anschließend die Frage, ob ein "ganzes" Motormodell aufgebaut werden soll.

3.9 Grafische Darstellung und Auswertung der Ergebnisse

Die Ergebnisse werden nach Durchführung einer über die Schaltfläche *"Calculation"* gestarteten Berechnung automatisch in einem neuen Fenster in Form von Grafiken dargestellt. Sofern bereits Berechnungen durchgeführt wurden wird dies durch die Schaltflache *"Results"* in der oberen Menüzeile angezeigt. Durch Mausklick auf diese Schaltfläche wird das Fenster mit den Grafiken aufgeblendet.

Die einzelnen Grafiken werden durch Anklicken der entsprechenden Zeile im Menübaum des Grafikfensters auf der rechten Seite angewählt. Beim Setzen eines Hakens in ein Quadrat wird die zugehörige Grafik bei der Generierung des Projektberichts automatisch in den Bericht übernommen.

Über das Menue "*Options*" können sowohl Grafiken als auch die berechneten Werte über den Zwischenspeicher in andere Anwendungen kopiert und dort weiter bearbeitet werden.

Abb. 129: Grafische Darstellung und Auswertung der Ergebnisse

3.9.1 Results

Die Berechnungsergebnisse werden über die Schaltfläche *"Results"* als Grafiken angezeigt. Sowohl Grafiken als auch Werte können über *"Options"→"Copy Picture" bzw "Copy Data"* in andere Applikationen kopiert werden. Im Einzelnen können folgende Grafiken angezeigt werden:

3.9.1.1 Cogging Torque und BEMF

- Cogging Torque + BEMF
 - Rastmoment und Harmonische
 - Fluss je Phase ohne/mit Strom und Harmonische für Phase U
 - Induktivität je Phase
 - BEMF je Phase/Strang und Harmonische für Phase U/UV
 - ke je Strang
- Expected Values als analytische Berechnung der zu erwartenden Werte für
 - Expected Motor Torque
 - Cogging Torque
 - Phasenstrom, Strangstrom
 - BEMF je Phase

3.9.1.2 Nominal Torque und Inductance

Es können folgende Berechnungsergebnis angezeigt werden:

- Nominal Torque + Inductance
 - Die Werte werden an Rotorpositionen innerhalb einer BMEF-Periode mit der in "Motor Parameters" angegebenen Schrittweite berechnet.
 - Torque
 - Rastmoment (Cogging Torque)
 - Reconstructed Cogging Torque (Rückführung der Ergebnisse für das Rastmoment auf die Rotorpositionen innerhalb der Rastmomentperiode)
 - Phasenstrom, Strangstrom
 - Fluss je Phase ohne/mit Strom und Harmonische für Phase U
 - Induktivität je Phase
 - BEMF je Phase/Strang und Harmonische für Phase U/UV
 - ke, kt je Strang
 - Klemmenspannung je Phase/Strang und Harmonische für Phase U/UV
 - Transformer Spannung je Phase und Harmonische für Phase U

3.9.1.3 Dynamic

Im Einzelnen können folgende Grafiken angezeigt werden:

- Dynamic Calculation
 - Rastmoment
 - Magnetischer Fluss ohne Strom
 - Phasenströme
 - Induktivitäten
 - BEMF
 - Magnetischer Fluss mit Strom
 - Drehzahl
 - Strangströme

3.10 Speichern und Laden der Simulationsmodelle

Über das Menü "File -> Save" und "File Save As" können die Simulationsmodelle in beliebigen Verzeichnissen gespeichert werden. Als Default Ordner wird das im smartFEM Settings angegebene Verzeichnis angezeigt. Es werden alle Parameterwerte und Ergebnisse in einer "modellname.mot" Datei gespeichert. Damit jedes Simulationsmodell in sich konsistent. Zusätzlich werden auch die verwendeten Topologie- und Materialdateien gespeichert.

Zum Öffnen von Simulationsmodellen gibt es mehrere Möglichkeiten:

• "File -> Open"

Der Speicherort des Modells kann ausgewählt und das Modell geöffnet werden. Dabei werden automatisch die im Topologieverzeichnis enthaltenen Topologien geladen. Sollten Parameterwerte (Abmessungen, Knotendichten, etc.) in neueren Versionen der Topologien u. U. nicht korrekt angezeigt werden, kann das Modell auch mit den im Modell gespeicherten Topologien geöffnet werden.

Abb. 130: Öffnen eines gespeicherten Simulationsmodells

• Mit "Strg + #" wird das entsprechende Simulationsmodell direkt geöffnet. Es werden jeweils die zuletzt gespeicherten vier Modell-Dateien und ihre Pfade angezeigt.

4 Add-ons

Add-ons sind spezielle Module, die als Dateityp dll erstellt und in dem Verzeichnis *"…\smartFEM\ElTopology"* gespeichert werden. Sie werden von smartFEM dynamisch bei Aufruf des Menüs *"Add-ons"* in *"Motor Parameters"* erkannt und aufgelistet. Benutzer können auch eigene Dll's erstellen, sofern Sie die Schnittstelle kennen.

Ad	d-ons elmoCAD
	ContourPlot 1.0.6
	EfficiencyPlots 1.0.02
	MotorControl 1.0.2
	MotorDiagrams 1.0.82 - Selected
	Ad

Abb. 131: Add-ons - Aufrufmenü

4.1 Motor Diagramme

Das Modul *"MotorDiagrams"* ist ein spezielles Modul, mit dem Motor-Diagramme mit verschiedenen Grafiken wie z.B. *"Drehmoment-Drehzahl-Diagramm"* erzeugt werden können. Die Basis dafür ist eine Ld/Lq-Matrix, wobei die Ergebnisse der einzelnen Ld/Lq-Sets in mathematischen Modellen mit Polynomen für die Erzeugung der Diagramme verwendet werden.

Der Aufruf für das Modul Motor-Diagramme erfolgt in "Motor Parameters" über das Menü "Add-Ons - MotorDiagrams".

Abb. 132: Motor Diagramme - Aufruf

Die Berechnungen zur Erzeugung verschiedener Grafiken werden auf Basis einer vom Benutzer vorzugebenden Strom-Theta-Matrix durchgeführt.

Aus der Strom-Theta-Matrix werden entsprechende Sets für die Ld/Lq-Berechnungen generiert. Über die Ld/Lq-Identifikation hinaus werden je Ld/Lq-Set verschiedene weitere Ergebnisdaten berechnet.

Abb. 133: Motor Diagramme - Strom-Theta-Matrix und Ergebniswerte

In dem Bildschirmfenster *"Diagram"* werden die Parameter zur Erzeugung der Diagramme mit Berechnung der darzustellenden Graphen eingegeben.

Die Wicklungsverschaltung "Stern/ Dreieck" wird automatisch aus der Parameterangabe in den "*Motor Parameters"* übernommen.

Bei Eingabe von "0" (Null) werden die jeweiligen Werte aus den Ergebnissen der "*Nominal Torque Calculation"* und den "*Motor Parameters"* übernommen und angezeigt.

📀 Add-on Topology 27S30P_	optimized_l	MotorDiag	rams_4.mot	t	_		×
File Options							
Name	: Motori	Diagran	ns 1.0.8	2			
Diagram Ld/Lq Sets Loss Sets							
Machine Type			Motor	С	Gener	ator	
Winding Connection			Star	С	Delta		
Data for Calculation of Graphs							
Input Voltage	€ Line To Line RMS ⊂ DC						
Input Voltage Line To Line RM		UsLL		175	v		
Motor Speed for Calculation of	UinLL_min		Speed		1100	rpm	I.
Electronic Current Limit RMS			lel_max		225	A	
Ca	alculate		Exit				
Messages							
					F	Release 1	.0.82:

Abb. 134: Motor Diagramme - Parameter für die Berechnung der Grafikdaten

Bei Auswahl von *Input Voltage = DC* wird aus dem eingegebenen Wert *UsDC* die entsprechende "*Input Voltage Line To Line RMS*" ermittelt und für die Berechnungen der Motordiagramme verwendet:

Data for Calculation of Graphs	
Input Voltage	○ Line To Line RMS ④ DC
Input Voltage DC	UsDC 137,748 V

Abb. 135: Motor Diagramme - Umrechnung UsDC <> UsLL_rms

In dem Bildschirmfenster *"LdLq Sets"* werden die Parameter für Ströme und Phasenverschiebungen eingegeben, aus denen die Ld/Lq Sets für die Berechnung Ergebniswerte der Strom-Theta-Matrix erzeugt werden. Mit dem Typ *"Simple"* werden einfache Motor Diagramme für einzelne Betriebspunkte berechnet.

Motor Characteristics						23
File Options						
Name: N	MotorDiagram	ms 1.0.82	2			
Diagram Ld/Lq Sets Loss Sets						
Data for Calculation of Ld/Lg Sets						-
Туре		C Simple	(•	Complex	c	
Set Type		IsTheta	С	Idlq		
Current Shape		Sine	С	Block		
Min. Line Current RMS {>=1}	ls_min		50	A		
Current Increment {>=1}	ls_inc		50	Α		
Number of Steps for Change	of Current {>=3}			4		Е
Max. Line Current RMS		ls_max		250	A	
Min. Current PhaseShift {-90<=	.<=0}	Theta_m	in	-75	°el	
PhaseShift Increment {>=1}		Theta_in		15	°el	
Number of Steps for Change	of PhaseShift {>=0}			5		
Max. PhaseShift	Max. PhaseShift				°el	
Show FEMAG windows		No	С	Yes		
Loss Calculations to be performed		C No	ſ	Yes		-
Calcu	late	Exit				

Abb. 136: Motor Diagramme - Parameter die Erzeugung der Ld/Lq Sets

Für die Berechnung der Verluste können die erforderlichen Parameter in dem Bildschirmfenster "Loss Sets" eingegeben werden.

Diagram LdLq Sets Loss Sets		
Working Folder for Loss Calculations		Select
Save Only Loss Results in mot-files	No	C Yes
Re-Read Loss Data from mot-files	No	C Yes
Data for Calculation of Losses for all Ld/Lq sets		
Number of Calculation Steps {0=default}	NSteps	1
Min. Speed	n_min	0 rpm
Speed Increment	n_inc	1000 rpm
Number of Steps for Change of PhaseShift {>=3}		12
Max. Speed	n_max	12000 rpm
Processors Cores used in parallel {4=max}		1

Abb. 137: Motor Diagramme - Loss Sets

Je Ld/Lq Set wird eine "Nominal Torque + Inductance Calculation" mit anschließender Berechnung der Verluste durchgeführt.

Nach Berechnung der Verluste werden diese aus den einzelnen Modelldateien gelesen und ebenfalls in der "Basis"-Modelldatei gespeichert. Mit *"Re-Read Loss Data from Mot Files = Yes"* werden die Verlustdaten erneut aus den Modelldateien gelesen.

Mit den eingegebenen Daten wird für jedes Ld/Lq-Set eine Modelldatei (mot-Datei) erzeugt und in dem in *"Working Folder" angegebenen* Verzeichnis gespeichert. Sofern das Zeichen "*" angegeben ist wird das Verzeichnis verwendet, in dem auch das mit smartFEM geöffnete "Basis"-Modell gespeichert ist. Die jeweiligen Dateinamen werden zur Unterscheidung um die Ld/Lq Parameter Is und Theta ergänzt.

MotorDiagrams > 12S10P_LossData >			×
Name	Geändert	Größe	Тур
Jan 1997 - 1997	16.01.2015 15:42		Dateiordner
12S10P.mot	16.01.2015 12:50	27.292.384	MOT-Datei
12S10P_Is250_Theta75.mot	21.11.2014 14:42	137.275.575	MOT-Datei
12S10P_Is250_Theta60.mot	21.11.2014 14:42	137.295.392	MOT-Datei
12S10P_Is250_Theta45.mot	21.11.2014 14:41	137.373.965	MOT-Datei
12S10P_Is250_Theta30.mot	21.11.2014 14:41	137.481.746	MOT-Datei
12S10P_Is250_Theta15.mot	21.11.2014 14:40	137.600.077	MOT-Datei
12S10P_Is250_Theta0.mot	21.11.2014 14:40	137.655.491	MOT-Datei
12S10P_Is200_Theta75.mot	21.11.2014 14:39	137.116.842	MOT-Datei
12S10P_Is200_Theta60.mot	21.11.2014 14:39	137.250.716	MOT-Datei
12S10P_Is200_Theta45.mot	21.11.2014 14:38	137.315.431	MOT-Datei

Abb. 138: Motor Diagramme - Beispiel für Ordnerinhalt mit "Basis"- und "Verlust"-Modellen

4.1.1 Durchführung der Berechnungen

Über die Schaltfläche wird die Erzeugung der Motor Diagramme ausgelöst und in folgenden Schritten durchgeführt:

- Schritt 1: Sequentielle Erzeugung der Ld/Lq Sets aus den im Parameterfenster *"Ld/Lq Sets"* angegebenen Daten. Dabei wird jeweils überprüft, ob der Set schon in der Ld/Lq Tabelle, die im smartFEM Hauptfenster über die Schaltfläche *"Lq-Lq"* aufgerufen werden kann, enthalten ist und bereits berechnet wurde. Wenn das nicht der Fall ist, wird der Set in die Tabelle eingefügt und die Berechnung dieses Sets gestartet.
- Schritt 2: Wenn alle Ld/Lq Sets berechnet sind, werden die Verlustberechnungen gestartet (d.h. Erzeugung der Modelldateien (mot-Dateien) je Ld/Lq Set und Durchführung der "*Nominal Torque + Inductance Calculations"* mit anschließenden Berechnungen der Verluste. Dies erfolgt in parallelen Prozessen entsprechend der angegebenen Anzahl der dazu zu verwendenden Prozessor Kerne.

Im Fenster *"smartFEM MultiRun"* wird eine Übersicht aller Ld/Lq Sets und deren aktueller Zustand bzgl. der Verlustberechnungen dargestellt. Hier kann auch noch die Anzahl der zu verwendenden Prozessorkerne von 1 bis maximal der in dem jeweiligen Rechner vorhandenen Kerne angepasst werden.

File (martFEM	Options Is						
et No.	Is_eff [A]	Theta[°el]	Id_eff [A]	lq_eff [A]	Status		Processor Cores:
	50	-75	-48,3	12,94	Running		2 🛨 (max 4)
2	100	-75	-96,59	25,88	Solved		
3	150	-75	-144,9	38,82	Solved		
4	200	-75	-193,2	51,76	Solved		
5	250	-75	-241,5	64,7	Solved		
6	50	-60	-43,3	25	Running		
7	100	-60	-86,6	50			
8	150	-60	-129,9	75			
9	200	-60	-173,2	100			
						2	
essages	s:				<u>_</u>		

Abb. 139: Motor Diagramme - smartFEM MultiRun mit Übersicht zum aktuellen Bearbeitungsstand für die Verlustberechnungen

Die mit *"MultiRun"* gestarteten smartFEM Prozesse laufen automatisch mit einer niedrigeren Priorität als der *"smartFEM-Master- Prozess"*, damit dieser nicht blockiert wird.

Schritt 3: Nach Abschluss von Schritt1 werden parallel zur Berechnung der Verluste die Motor Diagramme erzeugt. Sie können vom Benutzer bearbeitet werden und werden automatisch nach Berechnung der Verluste entsprechend ergänzt.

Basis sind die in dem Parameterfenster "Diagram" eingegebenen Werte:

- Input Voltage Line to Line oder DC
- Motor Speed zur Berechnung der Mindestspannung Input Voltage Line to Line
- Electronic Current Limiter zur Strombegrenzung. Dies dient nur zur optischen Abgrenzung des Betriebsbereichs, der durch den jeweils maximalen Motorstrom erreicht werden kann.

Es werden folgende Diagramme generiert:

Abb. 140: Motor Diagramme - Diagrammarten

4.1.2 Diagrammbeispiele

4.1.2.1 Drehmoment vs. Drehzahl

Abb. 141: Motor Diagramme - Drehmoment vs. Drehzahl

Die im Parameterfenster "*Diagram"* eingegebenen Daten können nach Erzeugung der Diagramme mit in den Diagrammfenstern dargestellten Schiebern verändert werden, wobei die Diagramme sofort aktualisiert werden.

Die punktierten Linienzüge stellen die Kurvenverläufe nach Abzug der Eisen-, Magnet- und externen Verluste dar.

Abb. 142: Motor Diagramme - Drehmoment vs. Drehzahl mit Luftspalt- und abgegebenem Drehmoment

Mit der mittleren Maustaste bzw. dem Scrollrad können einzelne Graphen oder Gruppen hervorgehoben werden.

Abb. 143: Motor Diagramme - Beispiel für Hervorheben eines einzelnen Graphen

Jedes Diagramm kann für benutzerspezifische Anordnung auf dem Bildschirm vom Diagrammbaum gelöst werden.

🚱 MotorDiagrams Graphs	1
File Options RMS AVG Val	lues Polynomial
 □·· Losses … Efficiency vs is, n=2400rpm … Tout vs is, n=2400rpm … Pcore vs is, n=2400rpm … Prognet vs is, n=2400rpm … Plosses vs is, n=2400rpm □·· Us=const … Speed vs Is, Us=90V 	T[nm] 120 110
Torque vs Is, Us=90V	100
Efficiency vs Spee	dock Graph
Is(n_max), Us=90V	80

Abb. 144: Motor Diagramme - Beispiel für "Undock Graph"

Abb. 145: Motor Diagramme - Beispiel für "Undock Graph"

In einigen Diagrammen werden zusätzlich Graphen für Minimalwerte von Strom und Spannung ausgegeben.

Abb. 146: Motor Diagramme - Minimalwerte der Spannung als Funktion des Stromes

4.1.2.2 Wirkungsgraddiagramme als Konturplots

Zur Beurteilung des Wirkungsgrades als Funktion von Drehmoment und Drehzahl können zwei verschiedene Konturplots erzeugt werden:

Abb. 147: Motor Diagramme - Wirkungsgrad bei minimalem Strom

Abb. 148: Motor-Diagramme - maximaler Wirkungsgrad

Mit Klick der rechten Maustaste in den Plot können verschiedene Einstellungen für den Plot vorgenommen werden. Der Name "Efficiency" kann nicht verändert werden und wird nur smartFEM intern verwendet.

Abb. 150: Motor Diagramme - Einstellungen für Konturplots

4.1.2.3 Torque Speed Feed Loop Tabelle (MTPA - Maximum Torque per Ampere)

Um die Einstellparameter U_S, Id/Iq, Ld/Lq und Theta in Abhängigkeit von Drehmoment und Drehzahl bei minimalem Strom zu ermitteln, werden die Ergebnisse über das Menu "*Options - Copy Torque Speed Feed Loop Table"* berechnet.

Star [d-on Topology 27S30P_optimized_MotorD	iagrams_4	-		×
File	Copy Results to Clipboard Save Results to File	1.0.8	1		
Diagrar	Copy Torque Speed Feed Loop Table				
Machir	пе Туре	Motor	C Ge	nerator	
Windin	g Connection	Star	Ita		
	Calculate	Exit			
Messag Calculation Add-On (Add-On (Calculation	es Speed Feed Loop Table Copied to Clipboard! on Of Torque Speed Feed Loop Table Started - Ple Calculation Finished! Calculation Finished! on Finished!	ease Wait !!!			< >

Abb. 151: MotorDiagrams - Copy Torque Speed Feed Loop Table

Nachdem die Berechnung der "*Torque Speed Feed Loop Table"* durch geführt wurde stehen die Daten im Clipboard zur Verfügung und können in anderen Anwendungen übernommen werden.

	Α	В	С	D	E	F	G	н	1	J	0	Р
1	Index	Tout [Nm]	n[rpm]	UsLL [V]	ղ [%]	ls_eff [A]	ld_eff [A]	lq_eff [A]	Ld [mH]	Lq (mH)		Theta[°el]
2	1	500	100	49,4	92,7	67,5	0,0	67,5	0,552	0,562		0
3	2	500	200	95,5	95,9	67,6	0,0	67,6	0,552	0,562		0
4	3	500	300	141,7	96,9	67,7	0,0	67,7	0,552	0,562		0
5	4	500	400	174,9	97,3	71,1	-22,3	67,5	0,560	0,568		-18,28
6	5	500	500	175,0	96,3	103,3	-79,6	65,9	0,572	0,579		-50,39
7	6	500	600	175,0	94,5	137,9	-120,3	67,5	0,575	0,583		-60,70
8	7	500	700	174,9	92,6	168,3	-153,2	69,6	0,577	0,585		-65,57
9	8	500	800	174,9	91,3	192,6	-179,2	70,6	0,578	0,586		-68,50
10	9	500	900	174,9	90,3	212,3	-200,1	70,9	0,578	0,587		-70,47
11	10	500	1000	174,9	89,5	228,6	-217,3	70,9	0,579	0,588		-71,92
12	11	500	1100	174,9	88,8	242,4	-231,8	70,8	0,579	0,588		-73,02
13	12	1000	100	55,2	86,5	136,7	0,0	136,7	0,527	0,553		0
14	13	1000	200	104,2	92,4	136,9	0,0	136,9	0,527	0,553		0
15	14	1000	300	153,2	94,5	137,2	0,0	137,2	0,527	0,553		0
16	15	1000	400	174,9	95,2	146,8	-54,8	136,2	0,552	0,567		-21,91
17	16	1000	500	174,9	94,1	183,5	-123,5	135,7	0,565	0,576		-42,30
18	17	1000	600	175,0	92,4	227,7	-181,8	137,1	0,570	0,580		-52,97
19	18	1000	700	175,0	90,7	270,8	-233,8	136,6	0,573	0,582		-59,71
20	19	1500	100	61,9	80,2	210,8	0,0	210,8	0,503	0,535		0
21	20	1500	200	114,9	88,6	211,2	0,0	211,2	0,503	0,535		0
22	21	1500	300	168,1	91,8	211,6	0,0	211,6	0,503	0,535		0
23	22	1500	400	174,9	92,1	239,6	-118,8	208,1	0,543	0,561		-29,71

Abb. 152: MotorDiagrams - Torque Speed Feed Loop Table

Abb. 153: MotorDiagrams - Plot2D "Efficiency Torque Speed Loop Table"

4.1.3 "Einfache" Motor Diagramme

Für eine schnelle Beurteilung der Motoreigenschaften in einzelnen Betriebspunkten können "Einfache" Motordiagramme erzeugt werden. Dazu muss in der Parametergruppe "Ld/Lq Sets" "Simple" ausgewählt werden, um dann die Daten für den entsprechenden Betriebspunkt einzugeben.

3 Motor Characteristics			x	1
File Options				
Name: Moto	rDiagrams 1.(0.65		
Diagram Ld/Lq Sets Loss Sets				
Data for Calculation of Ld/Lq Sets			Â	
Туре	Simple	C Complex		
Set Type	IsTheta	C Idlq		
Current Shape	Sine	C Block	=	
Line Current RMS {>=1}	ls	100 A		Es konnen folgende Diagramme
PhaseShift {-90<=<=0}	Theta	-30 °el		erzeugt werden.
Show FEMAG windows	No	C Yes		⊡. Us=const
Loss Calculations to be performed	C No	Yes	-	Speed vs. Is
Calculate	<u>E</u> xit			Torque vs. ls. Torque vs. Speed
Messages				Us vs. ls
Calculation Finished!				

Abb. 154: Motor Diagramme - Parametereingabe für "Einfache Motordiagramme"

Abb. 155: Motor Diagramme - Beispiel "Einfaches" Motordiagramm Us vs. Is mit Speed = constant

4.2 Motor Steuerung

Zur Erzeugung von Daten für die Motorsteuerungselektronik dient das Add-On *"MotorControl"*. Nach Eingabe der Berechnungsparameter wird überprüft, welche Ld/Lq-Sets noch nicht gelöst sind und die entsprechenden Berechnungen dann ausgeführt.

😵 Motor Characteristics	
File Options	
Name: MotorContro	ol 1.0.1
Ld/Lq Sets	
Winding Connection	Star C Delta
Data for Calculation of Ld/Lq Sets	
Set Type	
Current Shape	Sine C Block
Min. Line Current RMS {>=1}	ls_min 25 A
Current Increment	ls_inc {>=1} 25 A
Number of Steps for Change of Current {>=3}	10
Max. Line Current RMS	ls_max 275 A
Min. Current PhaseShift {-180<=<=180}	Theta_min -75 °el
PhaseShift Increment	Theta_inc 15 °el
Number of Steps for Change of PhaseShift {>=3}	5
Max. Current PhaseShift	Theta_max 0 °el
Show FEMAG windows	⊙No CYes ▼
Calculate	Exit
Messages Add-On Calculation Finished! Calculation Finished! Table Copied to Clipboard! Add-On Calculation Running!	
	Release 1.0.1

Abb. 156: Motor Control - Eingabe der Berechnungsparameter

Es werden verschiedene Plots erzeugt und die Ergebnisse können in den Zwischenspeicher und in einer Datei gespeichert werden.

Diagrammbeispiele:

Abb. 159: Motor Control - Diagramm "Flux Linkage Magnet vs. Is"

Abb. 160: Motor Control - Konturplot "Torque vs. Theta vs. Is"

	А	В	С	D	E	F	G	н	I	J	К	
1	Index	Is_eff [A]	Theta[°el]	Id_eff [A]	lq_eff [A]	Ld [H]	Lq [H]	FluxM_eff [Vs]	FluxD_eff [Vs]	FluxQ_eff [Vs]	TorqueFEM [Nm]	
2	1	25	-75	-24,1	6,5	5,665E-04	5,709E-04	1,6560E-01	1,5192E-01	3,6938E-03	48,2	
3	2	50	-75	-48,3	12,9	5,719E-04	5,752E-04	1,6557E-01	1,3795E-01	7,4438E-03	96,5	
4	3	75	-75	-72,4	19,4	5,749E-04	5,787E-04	1,6556E-01	1,2391E-01	1,1233E-02	144,9	
5	4	100	-75	-96,6	25,9	5,767E-04	5,813E-04	1,6552E-01	1,0982E-01	1,5046E-02	193,3	
6	5	125	-75	-120,7	32,4	5,777E-04	5,837E-04	1,6550E-01	9,5743E-02	1,8886E-02	242,0	
7	6	150	-75	-144,9	38,8	5,786E-04	5,857E-04	1,6547E-01	8,1644E-02	2,2738E-02	290,9	
8	7	175	-75	-169,0	45,3	5,791E-04	5,872E-04	1,6543E-01	6,7537E-02	2,6595E-02	340,0	
9	8	200	-75	-193,2	51,8	5,796E-04	5,881E-04	1,6539E-01	5,3424E-02	3,0443E-02	389,1	

Abb. 161: Motor Control - Ergebnisdaten
4.3 Allgemeine Konturplots

Zur Erzeugung von Konturplots aus vom Benutzer zusammengestellten beliebigen Daten dient das Add-On *"ContourPlot"*.

Die Daten eines Konturplots müssen in einer tabellarischen Textdatei (*.txt mit Tabulator getrennten Spalten oder im csv-Format) gespeichert sein. Die erste Zelle enthält Plot-, Spalten und Zeilennamen jeweils durch "\" getrennt.

	A	В	С	D	E	F	G	Н	I	J	
1	i_eff\speed\eta	1000	1100	1200	1300	1400	1500	1600	1700	1800	
2	10	88,22	88,46	88,61	88,69	88,72	88,7	88,65	88,58	88,47	
3	11	88,62	88,92	89,12	89,25	89,33	89,37	89,37	89,34	89,28	
4	12	88,88	89,22	89,47	89,65	89,78	89,86	89,9	89,91	89,9	
5	13	89,02	89,41	89,71	89,93	90,1	90,22	90,29	90,34	90,36	
6	14	89,09	89,53	89,86	90,12	90,32	90,48	90,59	90,66	90,71	
7	15	89,1	89,57	89,95	90,24	90,48	90,66	90,8	90,9	90,98	
8	16	89,06	89,57	89,98	90,31	90,57	90,78	90,95	91,08	91,18	
9	17	88,98	89,53	89,97	90,33	90,62	90,86	91,05	91,2	91,33	
10	18	88,88	89,46	89,93	90,32	90,64	90,9	91,11	91,29	91,43	
11	19	88,75	89,36	89,86	90,28	90,62	90,9	91,14	91,34	91,5	
12	20	88,6	89,25	89,78	90,21	90,58	90,88	91,14	91,36	91,54	

Abb. 162: Contur Plot - tabellarische Textdatei

Zur Erzeugung der Plots kann sowohl eine einzelne Textdatei oder auch ein Verzeichnis ausgewählt werden. Bei Angabe eines Verzeichnisses werden Plots von allen in dem Verzeichnis enthaltenen Dateien erzeugt.

Abb. 163: ContourPlot - Beispiel "Wirkungsgrad vs. Strom vs. Geschwindigkeit"

4.4 AC-Losses

Ermittlung der Wechselstromverluste in den Statorwicklungen die durch Skin- und Proximity Effekte hauptsächlich in großen elektrischen Maschinen hervorgerufen werden. Die Berechnungen erfolgen auf Basis der in *"Skin Effect in Large Polyphase Machines with Concentrated Windings" von Falk Laube, Helmut Mosebach und Wolf-Rüdiger Canders* angegebenen analytischen Algorithmen.

Für die Berechnung werden rechteckförmige Nuten mit Ein- und Zweischichtwicklungen und rechteckförmigen Leitern angenommen. Die Ströme I_1 und I_2 können unterschiedlichen Phasen gehören.

Abb. 164: AC-Losses - Nutmodell und Wicklungen

Gestartet wird das Modul in "*MotorParameters*" über die Menüfolge "*Add-ons - AC_Losses*". In dem Tab *"Basic*" kann angegeben werden, ob die für die Berechnungen erforderlichen Parameter manuell eingegeben werden oder von dem aktuell geöffneten smartFEM Maschinenmodell übernommen werden.

😵 Ad	d-on Topology	10MW.mot					-		×		
File	Options										
	Name: AC_Losses 1.0.1										
Basic	Geometry Mate	nial MotorParameter	AC-Resistar	nce & Losses							
Source	e of Parameter			c	Input Data	 Image: Second se	EM Mode	el			

Abb. 165: AC-Losses - Source of Parameter

Nachfolgend werden die Parameter eines großen smartFEM Modells verwendet, dass nahezu rechteckige Statornuten aufweist:

Abb. 166: AC-Losses - smartFEM Modell

Die aus dem smartFEM Modell übernommenen Daten werden in grüner Schrift dargestellt und können nicht verändert werden. Da im smartFEM Modell sind nicht alle benötigten Parameter vorhanden sind, müssen die entsprechenden Werte manuell ermittelt (ggfs. abgeschätzt) und ergänzt werden.

Für die Parameter in dem Tab *"Geometry"* sind dies:

- Nutbreite
- Anzahl der Leiter übereinander
- Anzahl der Leiter nebeneinander

Bas	ic Geometry Material	MotorParameters	AC-Resistance & Losses			
S	ot					
	Width of slot		Ws		81,34	mm
	Coils per slot		C 1 Coil	Coils		
С	onductor		rectar	igular O round		
	Height of conductor		Нс		5,5	mm
	Width of conductor		Wc		30	mm
	Number of conductors pe	r coil on top of each	n other Noond	uctors_ot	18	
	Number of conductors pe	r coil side by side	Ncondi	uctors_ss	1	
	Number of turns per coil		Nturns		18	

Abb. 167: AC-Losses - Geometry Parameter "smartFEM Model"

Sofern im Tab "Basic" als "Source of Parameter" "Input Data" gewählt wurde, müssen bis auf "Number of Turns" alle Parameter manuell ermittelt und eingegeben werden:

Basic Geometry Material MotorParameters AC-Resis	stance & Losses	
Slot		
Width of slot	Ws	81,34 mm
Coils per slot	C 1 Coil 📀 2 Coile	5
Conductor		nd
Height of conductor	Hc	5,5 mm
Width of conductor	Wc	30 mm
Number of conductors per coil on top of each other	Nconductors_ot	18
Number of conductors per coil side by side	Nconductors_ss	1
Number of turns per coil	Nturns	18

Abb. 168: AC-Losses - Geometry Parameter "Input Data"

"Material" Parameter: *"Conductivity at winding temperature"* wird aus den *"Material"* Parameter des smartFEM Modells übernommen. Mit Angabe von *"Conductivity at 20°C"* wird dann die Wicklungstemperatur errechnet, mit der das smartFEM Modell simuliert wurde.

Basic Geometry Material MotorParameters AC	-Resistance & Losses	
Slot		
Conductivity at 20°C	620	56 E+6 S/m
Thermal coefficient	α	3,93 E-3/K
Winding temperature	Т	93,873 °C
Conductivity at winding temperature	бТ	43,4 E+6 S/m

Abb. 169: AC-Losses - Material Parameter "smartFEM Model"

Sofern in *"Basic"* als *"Source of Parameter" "Input Data"* gewählt wurde, kann die Wicklungstemperatur bei der die Wechselstromverluste ermittelt werden ebenfalls manuell eingegeben werden. Die Leitfähigkeit bei dieser Temperatur wird dann berechnet.

Basic Geometry Material MotorParameters AC-Resista	nce & Losses	
Slot		
Conductivity at 20°C	620	56 E+6 S/m
Thermal coefficient	α	3,93 E-3/K
Winding temperature	т	93,873 °C
Conductivity at winding temperature	бТ	43,4 E+6 S/m

Abb. 170: AC-Losses - Material Parameter "Input Data"

"MotorParameters" werden immer von dem smartFEM Modell übernommen und dienen zur Information für den Anwender.

Basic Geometry Material MotorParameters AC-Resistance	8 Losses	
Nominal Speed	n	10 rpm
Frequency	f	16,666 Hz
Line current rms	Irms	9422,9 A
Phase shift of currents (2 coils per slot, different phases)	β	60 °el

Abb. 171: AC-Losses - Motor Parameter

In dem Fenster "AC-Resistance & Losses" werden die Ergebnisse für die Wechselstromwiderstände der Wicklung und die Wechselstromverluste ausgegeben.

	😵 Motor Parameters -			I X							
	Options Post-Processing Add-ons elmoCAD										
Air	Air Magnete										
Magnets Botor Steel	Add-on lopology		- 0	^							
Stator Steel	File Options										
Coils	Name	e: AC_Losses 1.0.1									
	Basic Geometry Material MotorParameters	AC-Resistance & Losses									
	SignificantDigits	Sd	5								
	Phase Resistance										
	at 20°C	Rph20	0.39269 mΩ								
	at winding temperature T	Rph	0,50843 mΩ								
	Total Average AC phase resistance	AC_Rph_avg	0,60469 mΩ								
	AC resistance of one conductor at slot openin	g AC_Rcon_ActLen_	max 0.002803 mΩ								
	Winding Losses (at selected Temperature)										
	AC-Losses not included	PwdgT	135,41 kW								
	Average AC-Losses	AC_Losses_avg	25.635 KW	$ \rangle $							
	Au-Losses included	AC_Pwdg1	[161,04 KW								
	Their of host values (to Their (e.g. offinit)	-base and, s-rardy Ther IX_cosses	12								
	Calcu	late Exit		1 1							
Winding Losses (at selected Temperatu	re)										
				erete (
AC-Losses not included		PwdgT	135,41	kW							
Average AC-Losses		AC_Losses_avg	25,635	kW							
AC-Losses included		AC_PwdgT	161,04	kW							
Prefix of loss values {10 [^] Prefix (e.g	g3=mili, 0=base unit, 3=kilo)	PreFix_Losses	3								

Abb. 172: AC-Losses - Ergebnisse

Hinweis:

 Auf Grund des analytischen Modells und der zum Teil nicht korrekten geometrischen Abmessungen von Nut und Leitern in Bezug auf das smartFEM Modell stellen die Ergebnisse der Wechselstromverluste in den Leitern nur grobe N\u00e4herungswerte dar, die mit einem gewissen Fehler behaftet sind. F\u00fcr genauere Ergebnisse m\u00fcssen die Berechnungen transient durchgef\u00fchrt werden. Dies ist mit dem aktuell verwendeten FEM Solver FEMAG f\u00fcr eine statische 2D-Simulation der elektromagnetischen Felder nicht m\u00f6glich.

5 Simulation im Batch

Batch-Dateien ermöglichen die sequentielle und parallele Durchführung von mehreren Simulationen Die jeweiligen Befehlszeilen für die durchzuführenden Simulationen können mit einem Texteditor erzeugt werden. Es ist keine bestimmte Reihenfolge der Parameter vorgeschrieben.

5.1 Beispiel für Batch-Datei mit sequentieller Durchführung der Simulationen

ECHO OFF

ECHO smartFEM Batch Mode running, press "CTRL+C" to stop Batch Mode

REM smartFEM Batch Commands for smartFEM Release 2.5.17 and higher REM REM [c:\...\]smartFEM.exe [help | /help | /?] [C:\...\]filename.mot -parameter REM REM If smartFEM.exe and/or mot-file are stored in the folders assigned with REM smartFEM settings, then the complete paths are optional. REM REM To display this file as help text [help|/help|/?] can be used. **REM Parameter:** REM REM "filename.mot" must be the first parameter, others can be in random sequence. **REM General options:** REM REM Text file with log information will be saved with name "filename.log" -log REM in the same folder as the mot-file . REM REM -hidefemag FEMAG windows will be closed and not shown. REM REM -multi1|multi2|... FEMAG will run on CPU (or Core) 1|2|... **REM Preprocessing options:** REM REM -top Load mot file with rotor and stator topology saved in mot-file. REM REM Load mot file with rotor topology saved in mot-file. -toprotor REM REM -topstator Load mot file with stator topology saved in mot-file. REM REM -dxf Refreshing of both rotor and stator dxf-files is performed. REM

REM -dxfrotor Refreshing of rotor dxf-file is performed. REM

REM -dxfstator Refreshing of stator dxf-file is performed. REM

REM -nophaseshiftcalculation no phase shift calculation will be performed

REM Calculation options:

REM	-cogging	Cogging Torque + BEMF Calculation.
REM REM	-nominal	Nominal Torque + Inductance Calculation.
		•

REM							
REM REM	-is400:-40	Curren	t sine exitation is_rms=400A and phase_shift_theta=-40°el				
REM REM	-iq306:-257	Curren	t sine d/q excitation with iq_rms=306A and id_rms=-257A)				
REM REM	-ldlq	Calcula	ation of user defined Ld/Lq sets.				
REM REM REM REM	-losses	Calcula Speed Losses	ation of losses with smartFEM "Operational Speed" and Range defined inside "MotorParameters-Postprocessing- ", loss results and loss data are saved.				
REM REM	-onlylossresults	Same a	as "-losses" but only loss results are saved.				
REM REM REM	-ls=100[:200:300:]	Calcula -ls=Firs	ation of losses at different speed with named speed stSpeed and optional :SecondSpeed:ThirdSpeeed:etc.				
REM REM REM	-lsr=0:3000:11	Calcula -Isr=Fir	ation of losses at different speed with speed range stSpeed:LastSpeed:NumberOfSteps.				
REM	-ldlq	Calcula	lation of user defined sets of Ld/Lq.				
REM C REM	alulation results options	:					
REM REM BEM	-export		Run batch command and export results from mot-file to text file with name "filename.txt".				
REM REM	-export exportfilename.	txt	Export of results to user defined "exportfilename.txt" file.				
REM REM REM REM	-export folderwithmotfiles		Run all batch command and export of results from each mot-file inside folder "\folderwithmotfiles" to "FolderResults.txt" saved in the same folder.				
REM REM REM	-exportonlyoverview		Run batch command and export only overview table results from mot-file to text file with name "filename.txt"				
REM REM	-save [newmotfilename	·]	Open mot-file, refresh results and save motfile optional with new mot-file name.				

REM Preprocessing will be automatically performed if required.

REM

REM Nominal Torque Calculation will be automatically performed if losses option is selected. REM

REM ! For correct Nominal Torque results phase angle between BEMF and

REM ! Current has to be checked before calculations are performed, when

REM ! Sinusoidal or User Defined Current is selected.

REM Examples:

REM 1. Perform cogging calculation and write messages to log.

REM D:\...\smartFEM.exe D:\elmoCAD\temp\MotorDesign.mot -cogging -log

REM 2. Perform nominal calculation and calculate losses for speed 7000 rpm REM D:\...\smartFEM.exe D:\elmoCAD\temp\MotorDesign.mot -nominal -ls=70000

REM 3. Perform nominal calculation and calculate losses for speed 0 rpm until 7000 rpm in steps REM of 1000 rpm for all mot files inside folder and export results to "FolderResults.txt"

REM D:\...\smartFEM.exe D:\elmoCAD\temp\modelfolder -export -nominal -losses -lsr=0:7000:8

ECHO OFF POPD PAUSE

Batch_Template.bat - Editor
Datei Bearbeiten Format Ansicht ?
echo off
c:\\smartFEM\smartFEM.exe -cogging E:\\MotorDesignTemp.mot
c:\\smartFEM\smartFEM.exe -nominal E:\\MotorDesignTemp.mot -ls=100:200:300
c:\\smartFEM\smartFEM.exe -nominal E:\\MotorDesignTemp.mot -lsr=1000:6000:6 -log
pause

Abb. 173: Parametervariationen - Beispiel Batch-Datei

Wenn die mot-Dateien in dem mit "*smartFEM Settings*" angegebenen Temp-Verzeichnis gespeichert sind, können die Pfadangaben entfallen.

Die Funktion "Preprocessing" wird sofern erforderlich automatisch ausgeführt.

Nach Start der Batch-Datei wird ein DOS-Fenster geöffnet, in dem der Ablauf dokumentiert wird.

Abb. 174: Parametervariationen - Beispiel Batch-Log-Datei

Das DOS-Fenster wird nach Abarbeitung aller Befehlszeilen geschlossen, sofern nicht das DOS-Kommando "pause" in der letzen Befehlszeile verwendet wird. Die von smartFEM in das Dos-Fenster ausgegebenen Meldungen werden in einer log-Datei gespeichert, wenn der Parameter -log verwendet wurde.

5.2 Export von Ergebnisdaten in eine Textdatei

Die in *"Results"* angezeigten Ergebnisdaten werden mit Hilfe des Batch-Befehls *"-export"* in eine Textdatei exportiert, die wiederum in einer Tabellenkalkulation für weitere individuelle Berechnungen geöffnet werden kann. Es gibt zwei Möglichkeiten für den Export:

a) Export der Ergebnisdaten eines Maschinenmodells (*.mot Datei)

Kommando: -export c:\...\MotorDesign1.mot c:\...\MotorDesign1_Results.txt

Sofern keine Pfade angegebenen warden, wird die Exportdatei in dem Verzeichnis gespeichert, in dem sich die mot-Datei befindet.

b) Export der Ergebnisdaten eines Maschinenmodells (*.mot Datei)

Kommando: -export c:\...\MotorVarianten Exported_Results.txt

In diesem Beispiel werden die Ergebnisse aller sich in dem Verzeichnis c:\...\MotorVarianten befindenden Maschinenmodelle in die Datei Exported_Results.txt exportiert

	А	В	С	D	E	F	G	Н	1	J	k
1	Export\Moto	orvariante_1.	not								
2	Cogging Toro	lue		Flux per Pha	se Without A	pplied Currer	nt		BEMF per Ph	ase	
3	max[Nm]	0,0069		max[Vs]	0,2175558	0,2175558	0,2175558		max[V]	140,183844	140,
4	min[Nm]	-0,0071		min[Vs]	-0,21755811	-0,21755811	-0,21755811		min[V]	-140,121843	-140,1
5	AVG[Nm]	-4,48E-05		AVG[Vs]	7,52E-08	3,90E-08	-5,89E-09		AVG[V]	-3,95E-16	2,3
6	RMS[Nm]	0,00413039		RMS[Vs]	0,15234267	0,15234272	0,15234271		RMS[V]	95,8105534	95,81
7	Ripple[%]	-31274,4476		Ripple[%]					Ripple[%]		
8	α [°mech]	Tcogg[Nm]		α [°mech]	Flux_U[Vs]	Flux_V[Vs]	Flux_W[Vs]		α [°mech]	BEMF_U[V]	BEMF_
9	0	2,20E-05		0	0,18473868	-1,20E-05	-0,18472713		0	-70,0141698	139,7
10	0,5	0,0009475		0,5	0,18277686	0,00386484	-0,18664296		0,5	-71,3753281	139,5
11	1	0,001885		1	0,18078018	0,00774081	-0,18852372		1	-72,6993401	139,4
12	1,5	0,002775		1,5	0,17873583	0,01161468	-0,1903545		1,5	-74,0547646	139,5
13	2	0,003625		2	0,17666292	0,01548183	-0,19214937		2	-75,504705	139,6
744											
745											
746	Export\Moto	orvariante_3.	not								
747	Torque With	Applied Curr	ent	Cogging Torque			Current per Phase				
748	max[Nm]	1,76		max[Nm]	0,00686		max[A]	2,99999998	2,99999998	2,99999998	
749	min[Nm]	1,49		min[Nm]	-0,0069		min[A]	-2,99271729	-2,99271721	-2,99271736	
750	AVG[Nm]	1,60333333		AVG[Nm]	-1,41E-05		AVG[A]	-9,18E-16	1,97E-17	1,24E-15	
751	RMS[Nm]	1,60602823		RMS[Nm]	0,00412153		RMS[A]	2,12132034	2,12132034	2,12132034	
752	Ripple[%]	16,8399168		Ripple[%]	-97419,7609		Ripple[%]				
753	α [°mech]	T[Nm]		α [°mech]	Tcogg[Nm]		α [°mech]	i_U[A]	i_V[A]	i_W[A]	
754	0	1,51		0	1,61E-05		0	-1,49968762	2,99999998	-1,50031326	
755	4	1,49		4	0,00637		4	-1,84670018	2,97085422	-1,12415517	
756	8	1,52		8	0,00465		8	-2,15776883	2,88388416	-0,72611668	
757	12	1,63		12	-0,00195		12	-2,42683896	2,74078258	-0,31394515	
758	16	1,74		16	0,00125		16	-2,64867343	2,54433479	0,10433697	

Abb. 175: Simulation im Batch: Exportierte Ergebnisdatei

5.3 Parallel Computing

Sofern auf einem PC mehrere Prozessorkerne vorhanden sind, können mittels Batch verschiedene Berechnungsläufe zur parallelen Abarbeitung auf die vorhandenen Prozessorkerne verteilt werden. Damit kann insbesondere dann erheblich an Rechenzeit eingespart werden, wenn z.B. eine Nominal Torque Calculation mehrere Stunden dauert.

Als beispielhafte Templates sind im Verzeichnis ...\smartFEM\Batch zwei Batchdateien enthalten.

5.3.1 _Batch_MultiRun.bat

Hier werden wie in Batch.bat die Berechnungen definiert und festgelegt auf welchem Prozessorkern sie ablaufen sollen:

```
echo off
rem smartFEM calculations with different mot-files, whereby parallel
rem computing on the existing CPU's or Core's of the PC is performed
rem
rem This batch must bestarted via _Batch_MultiRunStart.bat
rem
rem Nominal Torque calculation will be automatically performed before
rem calculations if neccessary.
rem example:
rem
           motfile-1 ... motfile-4 are running parallel on 4 cores
           motfile-5 ... motfile-8 are running parallel on 4 cores
rem
rem
           motfile-5 is running in sequence after motfile-1 is finished
rem
rem
           motfile-6
                                              motfile-2
                                "
                                                            "
           motfile-7
                                              motfile-3
rem
                                "
                                                            "
           motfile-8
                                              motfile-4
rem
set exepath=C:\Users\elmoCAD\smartFEM
set motpath=C:\Users\elmoCAD\Temp
set motfile-1=MotorDesignTemp_1.mot
set motfile-2=MotorDesignTemp 2.mot
set motfile-3=MotorDesignTemp 3.mot
set motfile-4=
set motfile-5=
set motfile-6=
set motfile-7=
set motfile-8=
if %1 == -multi1 goto :CPU1
if %1 == -multi2 goto :CPU2
if %1 == -multi3 goto :CPU3
if %1 == -multi4 goto :CPU4
Goto :End
```

rem ********** :CPU1 echo mot-file running on CPU1 echo on %exepath%\smartFEM.exe -nominal %motpath%\%motfile-1% %1 -log -hidefemag %exepath%\smartFEM.exe -nominal %motpath%\%motfile-5% %1 -log -hidefemag

Goto End

```
rem **********
:CPU2
echo mot-file running on CPU2
echo on
%exepath%\smartFEM.exe -nominal %motpath%\%motfile-2% %1 -log -hidefemag
%exepath%\smartFEM.exe -nominal %motpath%\%motfile-6% %1 -log -hidefemag
```

Goto End

```
rem *********
:CPU3
echo mot-file running on CPU3
echo on
%exepath%\smartFEM.exe -nominal %motpath%\%motfile-3% %1 -log -hidefemag
%exepath%\smartFEM.exe -nominal %motpath%\%motfile-7% %1 -log -hidefemag
```

Goto End

```
rem *********
:CPU4
echo mot-file running on CPU4
echo on
%exepath%\smartFEM.exe -nominal %motpath%\%motfile-4% %1 -log -hidefemag
%exepath%\smartFEM.exe -nominal %motpath%\%motfile-8% %1 -log -hidefemag
```

Goto End

rem *********** :End pause

Der Batch ist entsprechend der auf dem jeweiligen PC verfügbaren Anzahl von Prozessorkernen anzupassen.

Dieser Batch muss mit _Batch_StartMultiRun.bat gestartet werden!

5.3.2 _Batch_StartMultiRun.bat

Batch ruft den vorher beschriebenen Batch _Batch _MultiRun.bat mehrfach entsprechend der definierten Anzahl Prozessorkerne ohne Warten auf vollständige Durchführung auf. Dabei wird jeweils der zu verwendenden Prozessorkern als Parameter übergeben.

Der Batch muss ebenfalls hinsichtlich der verfügbaren Anzahl von Prozessorkernen des PC's angepasst werden.

echo off rem smartFEM calculations with different mot-files, whereby parallel rem computing on the existing CPU's or Core's of the PC is performed rem rem This batch will start _Batch_MultiRunStart.bat where mot.files and rem CPU's have to be assigned rem

pushd

start /min C:\Users\elmoCAD\Temp_Batch_MultiRun.bat -multi1 start /min C:\Users\elmoCAD\Temp_Batch_MultiRun.bat -multi2 start /min C:\Users\elmoCAD\Temp_Batch_MultiRun.bat -multi3 start /min C:\Users\elmoCAD\Temp_Batch_MultiRun.bat -multi4

popd exit

5.3.3 smartFEM

smartFEM kann auch gezielt mit folgendem Kommando auf einem bestimmten oder mehreren Prozessorkernen gestartet werden:

smartFEM.exe -multi# (# = Nummer des Prozessorkerns)

Damit können dann auch parallel ablaufende Simulationen durchgeführt werden.

Desktop + Dieser PC + Windows	s (C:) ▶ elmoCAD ▶ sma	rtFEM 🕨						
Name	Eigenschaften von	n smartFEM -multi1						
AddOni.dli	Sicherheit	Details	Vorgängerversionen					
Comm.dll	Aigemein	veikilupiding	Kompatibilitat					
smartFEM -multi1.lnk	smartFEM -multi1							
smartFEM -multi3.lnk	Zieltyp:	Anwendung						
smartFEM.exe	Zielort:	smartFEM						
Y smartFEM.exe.config	Ziel: smartFEM\smartFEM\s <mark>martFEM.exe -multi1</mark>							

Abb. 176: Parallel Computing - Zuweisung von Prozessorkernen

6 Spezielle Module

6.1 PM - Magnetization - Inner Rotor

Der Motor Typ "*PM* - *Magnetization* - *Inner Rotor*" dient zur Simulation der Aufmagnetisierung und der sich einstellenden Remanenz der Magnete eines Rotors, der mit unmagnetisiertem Magnetmaterial bestückt und anschließend mit Hilfe einer Magnetisierungsspule magnetisiert wird. Zur Berechnung der Remanenz sind zwei Verfahren implementiert: a) FEM-Berechnung mit FEMAG und b) analytische Berechnung, die dann verwendet werden kann, wenn der Eisenkern der Magnetisierungspule nicht aus geblechtem Material besteht und sehr hohe Wirbelströme auftreten.

Es kann jeder in smartFEM selektierbare Rotor für Innenläufer verwendet werden. In einem ersten Schritt wird der Rotor wie gewohnt mit der entsprechenden Topologie modelliert.

6.1.1 Rotor und Magnetisierspule

Zur Modellierung der Magnetisierspule ist in smartFEM eine entsprechende Statortoplogie "*MD....top*" enthalten. Die Anzahl Nuten entspricht automatisch der im Rotor definierten Anzahl Magnete.

Abb. 178: PM-Magnetization - Initialisierung

Als Magnetmaterial muss in *"Material"* eine Materialdatei selektiert werden, die als B(H) Kurve die Neukurve des Magnetmaterials vom Typ *"Soft Iron"* im 1. Quadranten enthält.

Material Settin	gs						Marcial		0.0
Material Propertie	5						Density	1855	Ar
C	oils Electric	al Condu	ctivity:	5600000	S/I	n	8960	kg/m ³	9.
Stator Steel:	Linear	•	μr:	800			7900	kg/m ³	7
Rotor Steel:	Linear	•	μr:	800			7900	kg/m ³	3
Magnet Materia	I: NonLinea	r 👻	Mat:	NdFeB_43_80p_Net] 🔹		5000	kg/m ³	2
					[NdF	eB_43_80p_	Neukurve_V	2.mc
						1ype 0=50	:: Soft Ira)00ka/m3	on	
						H(A/	(m)	B(T)	
						1000	00,0	0,16	
						2000	00,0	0,31	
						3000 4000	00,0	0,47	
						5000	00,0	0,79	
					Apply	6000	00,0	0,98	
					-	7000	00,0	1,19	
						8000	00,0	1,43	

Abb. 179: PM-Magnetization - Magnet Material

Die Daten für eine entsprechende Neukurve B(H) kann mit dem in smartFEM enthaltenen Material Explorer bzw. PowerCore® Explorer erfasst werden.

PowerCore® Explorer					- 0	×					
File Plot Help											
Material Folder: C:\Users\elmoCAE)\smartFEM\M	aterials	Select	Refresh							
1300-100.mc 9SMn28K_MPS1.mc	Filename		NdFeB_43_80p_N	eukurve_V2.mc							
NdFeB_43_80p_Neukurve_V2.mc	Name:		NdFeB_43_80p			_					
ST_37mc	Descriptio	on:	Neukurve								
TKES_2/0-35_Amc TKES_330-35_Amc	Mass Der	nsity [Kg/m3]:	5000			B-H Curve					
TKES_330-35_A_ext.mc TKES_350-50_A.mc	Sat. Magn	etization [T]:	0			File Option	ns				
TKES_350-50_A_ext.mc	Material T	Material Type: Soft Iron						40.00 N			
							NdFeB_	43_80p_Ne	eukurve_v2	.mc	
	B-H Curve	e Loss Coeff	Loss Data			14,0					
	Point	H [A/m]	B (T)	JП	μ.	13,0					
	1	100000	0.156	0,03034	1,241409	12,0					
	2	200000	0,312	0,06067	1,241409	11,0			/		
	3	300000	0,468	0.09101	1,241409	10,0		/			
	4	400000	0,624	0,12135	1,241409	9,0					
	5	500000	0,79	0,16168	1,257324	8,0					
	6	600000	0,976	0.22202	1.29446	7,0		/			
	7	700000	1,194	0.31435	1,357364	6,0	/	·			
	8	800000	1,428	0,42269	1,420458	5,0	/				
	9	900000	1,634	0,50303	1,444773	4,0					
	10	1000000	1,845	0,58836	1,468204	3,0	/				
	11	1100000	2,016	0,6337	1,458438	2,0	/				
	12	1200000	2,167	0,65904	1,437037	1,0					
	13	1300000	2,313	0,67937	1,415867	0.0 1	2000000 0	6000000.0	0000000 0	12000000 0	
		_	III			0,0	3000000,0	6000000,0	900000,0	12000000,0	H[A/m]
To define new material, select File->	New Materia	1				x= 9178369,211	3, y= 17,3352		X-Axis Units i	n A/m • Y-Axis	Units in T 👻 🚲

Abb. 180: PM-Magnetization - Neukurve eines Neodym Eisen Bor Materials

Im "Motor Parameters" werden anschließend die Daten zur Simulation der Magnetisierung angegeben:

- Min. Rotation Step:
- Convergence Accuracy:
- Magnetization Current:
- nt: Amplitude des Magnetisierungsstroms
- Remanence by:
- FEMAG: die Remanenzinduktion wird durch FEMAG ermittelt MEXFile: die Remanenz wird in einer "Aufmagnetisierungs"-

Abbruchkriterium für FEMAG Interationen

minimaler Schrittwinkel für die Drehung des Rotors

- Nominal Remanence Brem:
- rem: Nominale Remanenz bei dem gewählten Strom Isotrop bzw. Anisotrop

Tabelle vorgegeben.

- Anisotropy Mode:

😵 Motor Parameters		
Model Parameters Info	Magnetization Settings	
Min. Rotation Step: 0,5 • °mech	Convergence Accuracy	0,01
	Magnetization Current	3000 A
	Remanence by	☞ FEMAG C MEX File
	Nominal Remanence Brem	0.4 T
	Rel. Permeability	1.05
	Anisotropy Mode	Isotropic C Anisotropic
г		
	Apply Exit	

Abb. 181: PM-Magnetization - Motor Parameters

Abb. 182: PM-Magnetization - Start der Simulation mit "Run Magnetization"

Die Simulationsergebnisse können wie gewohnt in den Plots dargestellt und bearbeitet werden, z. B.:

Die sich tatsächlich in einem bestimmten Abstand zur Magnetoberfläche in Luft einstellende Induktion kann nach dem Speichern des Simulationsmodells als *.mot Datei in einem zweiten Schritt berechnet und dargestellt werden.

6.1.2 Berechnung und Auswertung der Luftspaltinduktion und Remanenz

Zur Beurteilung der Magnetisierung kann die Luftspaltinduktion von vormagnetisierten Rotoren mit Hilfe einer Statortopologie "Messring" berechnet und dargestellt werden. Dazu wird in der Rotortopologie eines neuen Modells über den Dialog "*File - Load Magnetization*" das vorher gespeicherte Simulationsmodell des vormagnetisierten Rotors geladen.

рт	opology Filename: CR01b_Surface_Mou	nt_Magnets_R11.top
File	Magnets	
	Load Topology Data From Mot File	
	Load Magnetization	gnets
	Export Magnetization File	
	Export Imported DXF-CSV File	
	lumber of magnets	
c	Duter rotor radius	Rr

Abb. 185: PM-Magnetization - Laden eines vormagnetisierten Rotormodells

Anschließend wird die Statortopologie "*CS01_Measure_Ring_Magnetization*" ausgewählt und entsprechend parametriert, so dass sie einer Einrichtung zur Messung der Remanzinduktion der Magnete entspricht. Der Abstand der Messsonde zum Magneten muss gleich dem Abstand des mittleren Luftspaltlayer sein, damit Messung und Simulationsergebnisse vergleichbar werden. Sofern die Messung in Luft erfolgt, sollte die Dicke des Statorrings ein Mehrfaches des Rotorradius betragen, um die Feldausbreitung in der Luft nicht durch die Randbedingungen eines zu schmalen Rings zu begrenzen.

Abb. 186: PM-Magnetisation - Modell zur Simulation der Induktion an der Rotoroberfläche

Die Simulation wird über die Schaltfläche "*Calculation*" gestartet. Anschließend können die Ergebnisse z. B. die berechnete Luftspaltinduktion sowohl mit dem Plot "BField" ausgewertet als auch in "*Motor Parameters"* mit "*Postprocessing - Forces and Torque - Calculate*" berechnet werden.

Abb. 187: PM-Magnetization - Plot der Induktionsverteilung

Die Remanenzinduktion der Magnete entspricht der in Abb. 112 dargestellten Auswertung.

Mit "*Options - Copy Airgap B-Field Values to Clipboard*" können die Werte der Luftspaltinduktion (radial und tangential) über den Zwischenspeicher in eine Tabellenkalkulation zu weiteren Auswertungen kopiert werden.

A	agnets otor Steel							×
¢	Options Post-Proc Calculation Force © Cog Losse © Nom. Torque + In E Losses © Dynamic	essing es and Torque es ductance Force Calculation	ation Param ment Type:	eters	C Fi	ull Period (Range	
	Model Parameters Infi Min. Rotation Step: 0 Cogging Torque Perio BEMF Period: 180'me Number of Calculation	File Options PI Calcul Copy Re Arc S Copy Air Length of Arc Number of Segments	ots sults To CI gap B-Fiel [360 [1	ipBoard d Values To	Strg+D Clipboard	mech	Segments Relativ Stator Rotor	ve to
Stator Complete		Data from Calculation (* Col Sec 1 - (01:->360")	gging Torqu	e C Nomi	nal Torque Se	a 1(0°->360°)	Calculate	
4 mm, Angle=181,1261*			Step	Rotor	FT [N]	Radius=9mm FN [N]	Angle_0	Torque
			1	0	0,0002	0	0	0

Abb. 188: PM-Magnetization - Luftspaltinduktion über Post-Processing berechnen

	А	В	С	D		E	F	G	Н	- I	J
1	B-Field Tange	ential Compo	nent								
2											
3	Position Ang	0°									1
4	0	0,2494					Luftsp	altindu	ktion		
5	0,5	0,2487		. c	.3 —						
6	1	0,2494					•				
7	1,5	0,2487									
8	2	0,2488			,-	1	\sim				
9	2,5	0,2475							Λ		
10	3	0,2477		E	, 1	\setminus					
11	3,5	0,2465				$\langle \rangle$					
12	4	0,2461		¥	۰ĩ					townsition from	h1
13	4,5	0,2443		2	4	90	180	- 40	360 10	corposition [in	lechj
14	5	0,2439		-0	,1 +1		1 1				
15	5,5	0,2421				\square	/				
16	6	0,2407		-0	,2 +	-		- + f			
17	6,5	0,2379				· · ·		· · ·			
18	7	0,2359		-0	,3 ⊥						
19	7,5	0,2326									
20	8	0,2295			-	B-Field Ta	ingential Comp	onent —	 B-Field Radia 	l Component	
21	8,5	0,2251		: <u>-</u>							

Abb. 189: PM-Magnetization - Luftspaltinduktion in Tabellenkalkulation ausgewertet

6.1.3 Verwendung von vormagnetisierten Rotoren in Motormodellen

Die als *.mot Datei gespeicherten Simulationsmodelle von vormagnetisierten Rotoren können in Motormodellen verwendet werden. Dazu wird in der Rotortopologie über den Dialog "*Options - Load Magnetization*" das entsprechende Rotormodell geladen (siehe Abb. 113).

Die Geometrieparameter des Rotors und das Magnetmaterial können nicht mehr geändert werden. Sofern das notwendig ist, muss dies wie in Tx. 6.1.1 erfolgen und der Rotor neu magnetisiert werden.

Alle anderen Funktionen zur Simulation des Motorenmodells mit vormagnetisiertem Rotor stehen wie gewohnt zur Verfügung.

Abb. 190: PM-Magnetization - Motormodell mit vormagnetisiertem Rotor

6.2 PM DC Brushed Motor

Die Erstellung eines Simulationsmodells PM DC Brushed Motor wird über "File - New - Select Motor Type" initialisiert. Die Topologien entsprechen denen der Außenläufermotoren. Es muss mindestens eine PM-BDLC Outer Rotor Topologie (*.top) im Topologie-Verzeichnis gespeichert sein, damit der Menüpunkt "*PM DC Brushed Motor"* angezeigt wird.

Abb. 191: PM DC Motor - Initialisierung

Es können alle Außenläufer Rotoren und Statoren ausgewählt werden.

Abb. 192: PM DC Motor - Beispiel eines Geometriemodells

Der Wicklungseditor generiert automatisch ein Wickelschema, dass auch manuell geändert werden kann und bietet die Möglichkeit verschiedene Phasendiagramme zu erzeugen.

Abb. 193: PM DC Motor - Wickelschema und Phasendiagramme

Wickelschema, Wicklungsparameter, Line to Line Definition und Kommutierungssequenz können manuell angepasst werden.

Abb. 194: PM DC Motor - Kommutierungssequenz

Die Position der Bürsten zu den Segmenten des Kommutators werden in "MotorParameter" festgelegt.

Motor Parameters 24s4p 2.mot			— [) X	
Online Ded Deservice Add			-		
Options Post-Processing Add-	ons elmoCAD				
Calculation Types	<u>^</u>				
C Cogging Torque + BEMF				1	
Nom. Torque + Inductance	Stator Coil Excitation - Current Par	rameters			
Losses	Trapezoid Shape Phase Cu 💌	Amplitude 2.828		Α	
C Dynamic		Prush Pos		-	
Model Parameters Info		brush Pos. jei	Displacer	ment of Brus	hes in °mech - Shifting of Commutation
Min. Rotation Step: 1 • * *mech		Funct. Width 70		%	
Cogging Torque Period: 15°mech					

Abb. 195: PM DC Bürstenmotor - Bürstenposition

6.3 Synchronous Motor (fremderregt)

Die Erstellung eines Simulationsmodells für einen fremderregten "*Synchronous Motor*" wird über die Menüfolge "*File - New - Select Motor Type*" initialisiert. Die Stator Topologien entsprechen denen der *"PM BLDC - Inner Rotor"* Motoren. Es muss mindestens eine Rotor Topologie (*.top) mit Fremderregung im Topologie-Verzeichnis gespeichert sein, damit der Menüpunkt *"Synchronous Motor"* angezeigt wird.

Abb. 197: Synchronous Motor - Initialisierung

In "*Material*" kann die Leitfähigkeit des Materials der Rotorwicklungen angegeben werden. Default Wert ist Kupfer mit 56000000 S/m.

😨 Material Settings	SynchronousMo	tor_9s4p.mot	_		×
⊡ ·· Model ···· Stator Coil	6 1 M	Rotor C	oil		
···· Stator Steel ···· Rotor Steel	Conductivity:	56000000		S/m	
	Properties				

Abb. 198: Synchronous Motor - Material Settings

Die Wicklungsparameter können für Rotor und Stator getrennt eingestellt werden

Die Erregung wird in " <i>MotorParameters</i> " als Konstantstrom eingestellt.	Constant Line Current Parameters Constant Line Current Amplitude 10 A Stator Coil Excitation - Current Parameters
	Sinus Shape Line Current Amplitude 10 A
	Phase Shift 0 °el
	,
Abb. 200: Synchronous Motor - Rotor Coil Excitation	Apply Exit Reset Results
Es können alle Berechnungen wie bei "F	PM - BLDC" Motor Parameters SynchronousMotor_
durchgeführt werden.	Calculation Types
	Nom. Torque + Inductance
Abb. 201: Calculation	Synchronous Motor - Model Parameters Info

Zur Ermittlung der BEMF muss eine eigene "*Nominal Torque + Inductance Calculation*" mit Rotorstrom Ir > 0 A und Statorstrom Is = 0 A durchgeführt werden.

Rotor Coil Excitation - Current Parameters Constant Line Current Y Amplitude 10	Inductance (Windings) Current
Stator Coil Excitation - Current Parameters Sinus Shape Line Current Amplitude A Phase Shift O *el Lead Phase None	BEMF

Abb. 202: Synchronous Motor - Coils Excitation

Abb. 203: Synchronous Motor - Equivalent Circuit

Das Ergebnis der "Transformer Voltage" entspricht dann der BEMF.

Abb. 204: Synchronous Motor - BEMF Equivalent

Die Berechnung der BEMF ist nicht zwingend notwendig. Alle Ergebnisse der "*Nominal Torque + Inductance Calculation*" sind nach Durchführung der Berechnung in den "*Results*" verfügbar.

Abb. 205: Synchronous Motor - Ergebnisse der "Nominal Torque ... Calculation"

6.3.1 Synchronous Motor - Field Plots

In "*Plots*" wird der Rotorstrom in der Spalte "i_r" manuell eingegeben oder über die Menüfolge "*Data - Paste Currents to set No. # - source*" eingefügt.

🔇 Field Pl	S Field Plots Definition MotorDesignTemp.mot											×
Options	Edit Data											
Set No.	RotorAngle	ls	Phase Shift	i_U	i_V	i_W	ir	Torque [Nm]	Picture	Report	Define	
1	0	10	0	-1,736	9,397	-7,66	10	Rotor Current in [A]	No		Plot	

Abb. 206: Synchronous Motor - Rotor Coil Excitation in "Plots"

Die Stromdichten werden entsprechend den Wickelschemata in den Rotor- und Statorwicklungen eingestellt und die Feldberechnungen durchgeführt.

Abb. 207: Synchronous Motor - Excitation Sources

Abb. 208: Synchronous Motor - Flussdichten und Feldlinien

6.4 Switched Reluctance Motor

Die Erstellung eines Simulationsmodells SR Motor wird über "File - New - Select Motor Type" initialisiert. Es muss mindestens eine SR Rotor Topologie (*.top) im Topologie-Verzeichnis gespeichert sein, damit der Menüpunkt "*SR* - *Motor*" angezeigt wird.

Abb. 209: SR Motor - Initialisierung

Die Rotor-Topologie eines SR-Motors unterscheidet sich gegenüber der eines PM-Motors dadurch, dass nur Rotoren ohne Magnete ausgewählt werden können.

Abb. 210: SR Motor - Beispiel eines Geometriemodells

In "Motor Parameters" kann der Strom als "User Defined Phase Current" vorgegebenen werden.

Abb. 211: SR-Motor - User Defined Phase Current

Da für den SR-Motor die Phasenlagen der Wicklungen nicht aus Motor-Topologie und Wicklelschema bestimmt werden können, wird für jede Phase eine Drehmomentberechnung mit Konstantstrom durchgeführt. Die Maxima der Drehmomente entsprechen dann der jeweiligen Phasenlage. Zur Durchführung dieser Berechnung muss in Motor Parameters die Schaltfläche *"ReCaculate Phase Current"* betätigt werden. Anschließend wird bei der nächsten *"Nom. Torque + Inductance"* Berechnung vorab die Phasenlagen berechnet und in *"Motor Parameters"* angegeben.

😮 Motor Parameters			
Options Post-Processing Add Calculation Types Nom. Torque + Inductance Phase Shifts - from Nominal Calc. Phase U - Not Defined	I-ons Calculation Parameters Movement Type: Motor Length [Lmot] Skew Angle	☞ Full Period C Range 50 0	mm °mech
Phase V - Not Defined Phase W - Not Defined	Phase Shifts - from Nominal Calc. — Phase U: 269,993 °el Phase V: 269,963 °el Phase W: 269,964 °el	1 3000 Star -	rpm
	User Defined Phase Currer ReCalculate Phase Shif Apply Exit	Edit Shape Reset Results]

Abb. 212: SR-Motor - Bestimmung der Phasenlagen

Die Anzeige der Simulationsergebnisse erfolgt dann analog wie in den vorherigen Kapiteln beschrieben.

Abb. 213: SR-Motor - Results

6.5 Synchronous Reluctance Mator

Die Erstellung eines Simulationsmodells SR Motor wird über *"File - New - Select Motor Type"* initialisiert. Es muss mindestens eine SR Rotor Topologie (*.top) im Topologie-Verzeichnis gespeichert sein, damit der Menüpunkt *"SR – Motor"* angezeigt wird.

File View Tools Windows Help						
	New					
	Open	😵 Select Motor Type 🛛 🗆 🖾				
	Save	Type Of Motors				
	Save As	C PM BLDC - Inner Rotor				
	Export for Mesh DXF Export	C PM BLDC - Outer Rotor				
	FEMAG Generate Proje	C PM DC Brushed Motor				
	Open Working	C PM Magnetization - Inner Rotor				
	U:\elmoCAD\sr D:\elmoCAD\Tı	C SR Motor				
	D:\elmoCAD\T D:\elmoCAD\T	Sync. Reluctance Motor				
	D:\elmoCAD\T	C Universal Motor				
		O PM - Linear Motor				

Abb. 214: Synchronous Reluctance Motor - Initialisierung

Es wird ein Motormodell mit 4 Polen und 4 Flussbarrieren (Rotor-Topologie CR_31_Synchronous_Reluctance) mit Rotorlage in d-Achse angezeigt.

Abb. 215: Synchronous Reluctance Motor - 4-polig

Beispiel : Ergebnisse für *"Torque vs. Theta"* aus parametrischen Ld/Lq Berechnungen mit dem Zeigerdiagramm für das Maximum des Drehmoments.

Abb. 216: Synchronous Reluctance Motor - Beispiel Simulationsergebnisse

6.5.1 Synchronous Reluctance Motor PM-Assisted

Dieser Motortyp ist in smartFEM als "*PM BLDC - Inner Rotor*" definiert. Die Rotortopologie heißt "*CR31_Synchronous_Reluctance_PM_Assisted*".

Abb. 217: Synchronous Reluctance PM-Assisted Motor - Rotortopologie

Beispiel : Ergebnisse für *"Torque vs. Theta"* aus parametrischen Ld/Lq Berechnungen mit dem Zeigerdiagramm für das Maximum des Drehmoments.

Abb. 218: Synchronous Reluctance Motor PM-Assisted - Beispiel Simulationsergebnisse

6.6 Universal Motor

Die Erstellung eines Simulationsmodells Universal Motor wird über *"File - New - Select Motor Type"* initialisiert. Es muss mindestens eine Universal Rotor Topologie (*.top) im Topologie-Verzeichnis gespeichert sein, damit der Menüpunkt *"PM - Universal Motor"* angezeigt wird.

Abb. 219: Universal Motor - Initialisierung

Die Modellierung eines Universal Motors unterscheidet sich gegenüber der Modellierung der anderen Motorentypen nicht bis auf die für Rotor und Stator getrennten Wicklungen und die Einstellung in "*Motor Parameters"*.

Abb. 220: 2-poliger Universal Motor mit 24 Rotornuten

Nach erfolgtem "Preprocessing" können folgende Berechnung durchgeführt werden:

- Erstellung von Plots der Flussdichte mit/ohne Rotor- (bzw. Anker-) und Statorströme zur Auslegung des magnetischen Kreises

Abb. 221: Universal Motor - Plot der Induktion und Feldlinien

Über die Einstellungen in "*Coil Exitation - Current Parameters"* können DC- und AC-Motoren simuliert werden. Die Simulation erfolgt in mehreren Schritten:

- Berechnung der Kommutierungsreihenfolge ("Commutation Sequence")
- Berechnung des Drehmoments während der Kommutierung ("Switching Torque") Ermittlung des Drehmoments
- Berechnung des Drehmoments im AC- oder DC-Betrieb ("Motor Torque")
- Berechnung der Rotorposition zur Positionierung der Bürsten

Options Post-Processing Ad	ld-ons		
Calculation Types	Calculation Parameters		
 Nominal Calculation Losses 	Movement Type:	Full Period	C Range
Calculation Steps	Number of Calculation Steps Per P	eriod 20	
Commutation Sequence	Convergence Accuracy	0.001	
C Switching Torque	Motor Length [Lmot]	100	mm
Model Parameters Info	Operational Speed	3000	rpm
Min. Rotation Step: 0,5 🔹 °mecl	Rotor Coil Excitation - Current Para	meters	
Calc Period: 360°mech	E Trapezoid Shape Phase Cu	Brush Pos. 0	°mech
Maximum Number of Steps: 720		Calc. Angle 0	°mech
Rotor Phase Shifts - from			
Phase 01 - Not Defined		Comm. Length 40	°mech
Phase 02 - Not Defined	Stator Coil Excitation - Current Para	meters	
Phase 03 - Not Defined	Constant Line Current	Phase U 10	Α
Phase 04 - Not Defined			
		Phase V -10	А

Abb. 222: Universal Motor - Motor Parameters

6.6.1 Berechnung der Kommutierungsreihenfolge "Commutation Sequence"

Da wegen der fehlenden Magnete "*Cogging Torque + BEMF*" nicht ermittelt werden können, ist ausschließlich die "*Nominal Calculation*" ohne/mit Verlustberechnung möglich. Zunächst werden in "*Motor Parameters*" die grundlegenden Parameter eingestellt und als erster Simulationsschritt "*Commutation Sequence*" gewählt. Mit Start "*Apply*" und "*Calculation*" werden folgende Berechnungen ausgeführt:

- Erregung der Feldwicklung mit DC Strom (Amplitude) bei hoher Ankerdrehzahl.
- Simulation ohne Ankerströme, um den Fluss pro Wicklung in Abhängigkeit des Wicklungsschemas zu ermitteln.
- Simulation mit Rotation des Ankers.
- Ermittlung der induzierten Spannung ("*Transformer Voltage"*) in den Ankerwicklungen und deren Phasenlagen.
- Definition der Kommutierungsequenz auf Basis der induzierten Spannungen.
- Festlegung einer ersten Bürstenposition basierend auf der induzierten Spannung oder Fluss in den Wicklungen für eine vorgegebene Ankerposition (Wicklungen mit maximalem Fluss bzw. minimalen induzierter Spannung beginnen zu kommutieren).

Nach Durchführung dieses Simulationsschrittes werden in *"Motor Parameters"* die Phasenlagen aller Wicklungen dargestellt. Wicklung Nr. 13 in Nut 01 rechts und Nut 13 links hat die Phasenlag 0° el.

Calculation Steps	Permeability Mode:	Restored	
Commutation Sequence -	Number of Calculation Steps Per Peri	iod 36	
O Switching Torque	Comment Annual	0.001	
C Motor Torque	Convergence Accuracy	10,001	
Model Parameters Info	Motor Length [Lmot]	100	
Min. Rotation Step: 0,5 - °mec	Operational Speed	30000	
Calc Period: 360°mech	Rotor Coil Excitation - Current Parame	eters	
Maximum Number of Steps: 720	Trapezoid Shape Phase Cu 💌	Brush Pos. 0	
Rotor Phase Shifts - from			
Phase 09: 60 °el	C	Calc. Angle 0	
Phase 10: 45 *el	Co	omm. Length 15	
Phase 11: 30 °el	Stator Coil Excitation - Current Parame	eters	
Phase 12: 15 °el	Sinus Shape Line Current 💌	Amplitude 10	
Phase 13: 0 °el	E	Freq 50	Abb. 224: Phasenlagen der Wicklung
Phase 14: 345 °el			

Abb. 225: Universal Motor - Transformer Voltage per Rotor Phase (Rotor Current = 0A)

6.6.2 Berechnung des Drehmoments während der Kommutierung "Switching Torque"

Die Einstellung hierzu erfolgt in *"Motor Parameters - Calculation Steps".* In *"Results"* können u.a. folgende Graphen angezeigt werden:

Die Berechnung erfolgt bei dem gewählten Beispiel mit 2 Statornuten und 24 Rotorwicklungen über die Rotor Positionen 0 - 15°mech.

Abb. 227: Switching Torque - Rotorstöme

6.6.3 Berechnung des Drehmoments im AC- oder DC-Betrieb "Motor Torque"

Für den DC-Betrieb muss in *"Motor Parameters - Coils Excitation"* Konstantstrom gewählt werden. Für die nachfolgend angezeigten Ergebnisse wurde sinusförmiger Strom eingestellt, d.h. die Simulation wurde als AC-Motor durchgeführt.

Die Einheit der Abzisse wird jetzt im Zeitbereich angegeben - in dem Beispiel beträgt die Periode des sinusförmigen Statorstromes 20 ms entsprechend einer Frequenz von 50 Hz.

Die Rotorströme i_C 01 bis i_C 13 haben die gleiche Phasenlage. Die Rotorströme i_C 14 bis i_C 24 haben ebenfalls die gleiche Phasenlage aber um 180°el gegenüber den vorher genannten versetzt.

Abb. 231: Motor Torque - Drehmoment des AC-Motors

6.6.4 Berechnung der Rotorposition zur Positionierung der Bürsten

Für die Berechnung der optimalen Position der Bürsten können in "Motor Parameters - Coil Excitation - Current Parameters" verschiedene Bürstenpositionen, Berechnungswinkel und Kommutierungslängen eingestellt werden. In "Calculation Steps" wird "Motor Torque" ausgewählt. Die Ergebnisse werden nach erfolgter Berechnung wie gewohnt in den Diagrammen unter dem Menü "Results" angezeigt.

Calculation Steps	Permeability Mode:	Restored ()	C Actual
C Commutation Sequence -	Number of Calculation Steps Per	Period 36	
C Switching Torque		0.001	
Motor Torque	Convergence Accuracy	10,001	
Model Parameters into	Motor Length [Lmot]	100	mm
Min. Rotation Step: 0,5 • °mecl	Operational Speed	30000	rpm
Calc Period: 20ms	Rotor Coil Excitation - Current Pa	rameters	
Maximum Number of Steps: 720	Trapezoid Shape Phase Cu 💌	Brush Pos. 0	°mech
Rotor Phase Shifts - from		I	
Phase 01: 180 °el		Calc. Angle 0	°mech
Phase 02: 165 °el		Comm. Length 15	°mech
Phase 03: 150 °el			

Abb. 232: Universal Motor - Positionierung der Bürsten

6.7 PM - Linear Motor

Die Erstellung eines Simulationsmodells Linear Motor wird über *"File - New - Select Motor Type"* initialisiert. Es muss mindestens eine Linear Motor Topologie (*.tol) im Topologie-Verzeichnis gespeichert sein, damit der Menüpunkt *"PM - Linear Motor"* angezeigt wird.

Abb. 233: PM-Linear Motor – Initialisierung

6.7.1 Modellbildung

Die Modellierung eines Linear Motors unterscheidet sich gegenüber der Modellierung der anderen Motorentypen nur dadurch, dass Rotor- und Statorgeometrie in einer Topologie "*Geometry*" parametriert werden. Alle anderen Funktionen sind gleich - ausgenommen die Berechnung der Eisen und Magnetverluste und Motor Diagramme.

Abb. 234: PM-Linear Motor - Beispiel eines Geometriemodells

Abb. 235: PM - Linear Motor - Darstellung der Kräfte und Luftspaltinduktion

6.7.2 Berechnung der Verluste

Die Berechnung der Verluste von Linearmotoren erfolgt nur für periodische Modelle, da nur hierfür Fourier Transformationen durchgeführt werden können.

Folgende Topologien sind periodisch bzw. können zwischen periodisch und nicht periodisch umgeschaltet werden.

• "H3LM2 Linear motor - periodic" "H3LM3 Linear motor - full slot winding - periodic"

Abb. 236: PM – Linear Motor - periodische Modelle H3LM2 und H3LM3

• "LM021c"

In der Parametergruppe *"Geometry"* wurde der Parameter *"Type of Model"* eingeführt, mit dem zwischen nicht-periodischem und periodischem Modell umgeschaltet werden kann. Dabei werden beim periodischen Modell die nicht-periodischen Geometrieanteile weggelassen.

Types of Rotor: LM021c					•
Coils per Slot: O 1 Coil	Coils				
Geometry Basic Elements					
					^
Type of Model {0=non-periodic, -1=r	periodic}		0		
Number of slots / Number of teeth		Ns / Nt	6		
Motor unit width		Wmot	84	mm	
	Non-Periodic Model				
				ľ	
	Periodic Model				

Abb. 237: PM - Linear Motor - LM021c, Umschaltung periodisch / nicht periodisch

• "*LMxxx*"

Die weiteren Linearmotor Topologien werden nach und nach entsprechend erweitert.

Die Berechnung der Verluste erfolgt wie bei den rotierenden Maschinen, indem **"Losses"** in **"Motor Parameters"** ausgewählt wird und nach durchgeführter **"Nominal Force + Inductance"** Berechnung die Verluste in **"Postprocessing"** ermittelt werden.

Abb. 238: PM – Linear Motor - Berechnung der Verluste

6.8 Aktuator

Geometriemodelle von Aktuatoren wie z.B. Ventile können entsprechend den DFX-Importregeln mit CAD-Programmen erstellt und nach dem DXF-Import in smartFEM simuliert werden.

Abb. 239: Aktuator - CAD Zeichnung

In der CAD Zeichnung müssen folgende Basis Parameter als Text enthalten:

- "Type of Motor = Actuator"
- "CompletePole = True/False" oder "CompletePole" bzw. "HalfPole"

Weitere Parameter können optional angegeben werden:

- "CoordinateSystem = xy" (Defaultwert, wenn nicht angegeben) oder "… = rz" für rotationssymmetische Modelle
- Zusätzliche Parameter entsprechend anderen Maschinenmodellen wie z.B.: NPhases, Ns, NCoilsPerSlot, Bnd, Dp, etc.

Die Aktuatoren werden z.Z. wie Linearmotoren behandelt. Der Maschinentyp "Actuator" wird zu einem späteren Zeitpunkt als eigener Typ verfügbar sein. Der Topologiename für den DFX-Import lautet *"LA_CADdata"*.

Für die Ermittlung der auf den beweglichen Teil (auch "Kolben" genannt) wirkenden Kräfte muss der Integrationsweg "*ForcePath*" in der Zeichnung als Polygonzug enthalten und mit dem entsprechenden Text gekennzeichnet sein. Sofern die Kräfte an unterschiedlichen Positionen des Kolbens berechnet werden sollen muss zusätzlich eine Linie als Richtungsvektor enthalten und mit dem Text "*MoveVector*" gekennzeichnet sein. Die Bewegung des Kolbens für die unterschiedlichen Positionen wird ausgehend vom Anfangspunkt des Vektors in Richtung Endpunkt vorgenommen. Der maximal mögliche Weg entspricht der Vektorlänge. Die Bewegung entlang Kreisbögen bzw. Kurven wird in zukünftigen smartFEM Versionen verfügbar sein.

Zu Festlegung des Ursprungs P(0,0) muss ein Punkt an eine entsprechende Stelle gezeichnet werden die z.B. auf der Mittellinie mit y=0 [P(0,0) = P(x,0)].

Abb. 241: Aktuator - ForcePath und MoveVector

Der Polygonzug "*ForcePath*" muss um das beweglich Aktuator-Teil herum entgegen dem Uhrzeigersinn vollständig in Luft verlaufen.

Der "*MoveVector*" kann an einer beliebigen Stelle positioniert werden. Es werden alle Geometrieelemente in smartFEM bei Bewegung an eine andere Position verschoben, die innerhalb des "*ForcePath*" liegen.

Der Luftspalt wird durch den Anwender definiert und kann optional als Linie mit der Textbezeichnung "Airgap" gezeichnet werden. Die Länge wird nach dem DXF-Import als Parameter angegeben und in dem Grafikfenster gekennzeichnet.

Abb. 242: Aktuator - ForcePath, MoveVektor und Airgap

Die Geometrie des beweglichen Geometrieteils muss mindestens mit einer Linie an den festen Teil der Geometrie angebunden sein, da es wegen der Vernetzung keine freien Flächenelemente geben darf. Abb. 243: Aktuator - Verbindung des beweglichen mit dem festen Geometrieteil Platen Steel Topology Filename: LA_CADdata.tol × Forcer Steel File Edit Magnets Options Coils 50 Types of Rotor: LA_CADdata -Coils per Slot: I Coil C 2 Coils Import File: LA_Actuator_0°.dxf U Geometry Basic Elements ForcePath **MVIenath** MoveVector length MVangle

Abb. 244: Aktuator - Darstellung des "ForcePath" in smartFEM

	Types of Rotor: LA_CADdata		•
	Coils per Slot:		
	Import File: LA_Actuator_0°.dxf		
	Geometry Basic Elements		
	ForcePath	FP	0 mm
Disp	MoveVector length	MVIength	2 mm
	angle	MVangle	0 deg
	displacement of platen	DispP	1 mm

angle

displacement of platen

Abb. 245: Aktuator - Darstellung des "MoveVector" mit Verschiebung des Kolbens

deg

DispP

Ergebnisse nach "*Nominal Torque*" und "*Plot*" Berechnungen:

- Kräfte in Richtung des "MoveVector" vs. "Displacment"
- Feldbilder

Abb. 246: Aktuator - Simulation und Ergebnisse

Für rotationssymmetrische Aktuatoren wird nur eine halbe Geometrie ausgehend von der Mittellinie bzw. Symmetrielinie mit x=0 nach rechts mit x>0 gezeichnet werden. Der Ursprungspunkt P(0,0) sollte an die untere linke Ecke gezeichnet werden. Es muss dann auch der Basisparameter "*CoordinateSystem = rz*" angegeben werden.

Diese Funktion ist noch nicht implementiert!

7 Schnittstellen

7.1 Export von Ergebnisdaten als tabellarischer Text

Alle Ergebnisdaten können über das ClipBoard per Copy/Paste in andere Softwaretools kopiert werden und teilweise auch direkt in tabellarischen Textdateien gespeichert werden.

Beispiele:

Abb. 247: Export von Ergebnisdaten als Text - Cogging Torque

	Α	В	С	D	E	F	G	H	I	J	K	L	M	N	0	P
26792																
26793																
26794	MESH PROPI	RTIES														
26795	Nr.	Material	Area[mm2]	CenterR[mn	CenterAngle	Br[T]	Bt[T]	B [T]	H [kA/m]	-Hc [kA/m]	μr	i_den [A/mn	Mr [mT]	[J] [T]	Pdens[W/kg]	Nodes
27276	481	ryok	0,47527113	191,3968	91,9393374	0,08971814	-0,89424002	0,89872941	0,11416928	0	6264,25996	0		0,89858595	0,923151578	(2789 2448 2449)
27277	482	ryok	0,47525208	192,0001	91,9521218	0,088072	-0,87380929	0,8782365	0,11067081	0	6314,92924	0		0,87809743	0,893510713	(2788 2448 2789)
27278	483	ryok	0,47520556	190,5298	91,7629014	0,0778048	-0,90757444	0,91090337	0,11627665	0	6234,04412	0		0,91075725	0,964858027	(2790 2449 2450)
27279	484	ryok	0,47522462	191,133	91,7762931	0,07600725	-0,88613072	0,88938448	0,11256806	0	6287,30444	0		0,88924302	0,940062934	(2789 2449 2790)
27280	485	ryok	0,47520534	189,6647	91,5848459	0,06593247	-0,92340466	0,92575551	0,11887695	0	6197,10299	0		0,92560612	1,000113297	(2791 2450 2451)
27281	486	ryok	0,47520534	190,2677	91,5988708	0,0638589	-0,89942231	0,90168645	0,11468344	0	6256,69438	0		0,90154234	0,992668512	(2790 2450 2791)
27282	487	ryok	0,47527138	188,8013	91,4051528	0,0540221	-0,94320615	0,94475194	0,12233342	0	6145,57786	0		0,94459821	1,002184352	(2792 2451 2452)

7.2 Dokumentation "Project Report"

smartFEM bietet die Möglichkeit über die Menüfolge *"File"→"Generate Project Report"* einen Projektbericht zu generieren, der im RTF-Format gespeichert wird und mit gängigen Textprogrammen weiterbearbeitet werden kann. Die Berichtsinhalte (Designdaten, Berechnungsergebnisse und Grafiken) können benutzerspezifisch ausgewählt werden.

Die Auswahl der Diagramme erfolgt bei den entsprechenden Simulationsergebnissen.

Abb. 249: Projektbericht: Auswahl der Diagramme

Die Auswahl von Diagrammen generell, einzelner Designparametern und Berechnungsergebnisse als Text erfolgt in einem PopUp-Fenster nach Anklicken des Menüs *"Generate Project Report":*

Abb. 250: Projektbericht - Auswahl von Designparametern und Ergebnissen als Texte

Beispiel:

Abb. 251: Projektbericht mit Microsoft® Word geöffnet

7.3 FEMAG

smartFEM benutzt FEMAG zur numerischen Berechnung aller Ergebnisse, die auf Basis der Finite-Elemente-Methode (FEM) ermittelt werden. Dazu übergibt smartFEM an FEMAG alle erforderlichen Informationen und steuert alle FEMAG Prozesse

- zur Erstellung des für Analyse und Auswertung der numerischen Berechnungen erforderlichen Simulationsmodells ausgelöst durch Betätigung der Schaltfläche "*Preprocessing".*
- zur Durchführung aller Analysen und Auswertungen ausgelöst durch Betätigung der Schaltfläche "*Calculation"*

smartFEM übernimmt seinerseits aus den FEMAG Ergebnisdateien alle relevanten Daten für weitere Berechnungen, Auswertungen und grafische Darstellungen.

Laufende FEMAG Prozesse können jederzeit durch Betätigung der Schaltfläche "*Calculation Running"* kontrolliert abgebrochen werden, ohne dass Daten verloren gehen.

Der Benutzer kann FEMAG in der Version, die er unter mit der Menüfolge "Tools \rightarrow smartFEM Settings \rightarrow User FEMAG Exe File" eingestellt hat, jederzeit direkt durch Betätigung der Schaltfläche "FEMAG" starten. Bei Klick mit der rechten Maustaste auf die Schaltfläche wird ein Auswahlmenü angeboten:

Abb. 252: FEMAG aus smartFEM heraus starten

• "Empty FEMAG"

FEMAG wird gestartet. Der Benutzer kann ein neues FEMAG Modell erstellen oder ein bereits bestehendes weiterbearbeiten.

• "Copy Preprocessing Files With Name "PreFile""

Das aktuelle smartFEM Modell wird unter den Namen "*Prefile.a7*" und *"PreFile.i7*" als Kopie im angegebenen FEMAG Verzeichnis zur Verfügung gestellt. Gleichzeitig wird FEMAG gestartet und der Benutzer kann das Modell mit den FEMAG Kommando *"Select Input File"* laden und bearbeiten. Vom Benutzer durchgeführte Änderungen an dem Modell und Auswertungen werden von smartFEM nicht übernommen.

7.4 CAD - DXF Import

7.4.1 Topologien

Für den Import von mit CAD-Systemen erstellten 2D Rotor- und Statorgeometrien wurden spezielle Topologien realisiert, die den Import von Geometriedaten im DXF oder CSV Format ermöglichen:

- "PM BLDC Inner Rotor"
 - CR_CADdata.top
 - CS_CADdata.top
- "PM BLDC Outer Rotor", "PM DC Brushed Motor"
 - o OCR_CADdata.top
 - o OCS_CADdata.top
- "Synchonous Motor"
 - Sync_CADdata.top
- "SR Motor"
 - o SR_CADdata.top
- "Sync. Reluctance Motor"
 - SyncRel_CADdata.top
- "Universal Motor"
 UR CADdata.top
- "Linear Motor"
 - LM_CADdata.top

"Actuator"

• LA_CADdata.top

Sie werden zunächst wie die "normalen" Topologien aufgerufen bevor die Importdatei selektiert werden kann.

7.4.2 DXF Import

Basis für die Implementierung der DXF-Schnittstelle ist die Dokumentation "AutoCAD_2011_dxf_ reference_v.u.25.1.01" von Autodesk, Inc., USA.

Aus den DXF-Dateien werden die Entities "ARC", *"CIRCLE", "LINE", "LWPOLYLINE", "POINT", "MTEXT", "TEXT"* und *"SPLINE"* mit den für smartFEM relevanten Daten selektiert und daraus alle für die Simulation erforderlichen Informationen generiert:

- POINT: Der Ursprung P(0) des smartFEM Koordinatensystems hat die Koordinaten x = 0und y = 0 und ist gleichzeitig Mittelpunkt aller Rotor- und Statorgeometrien.

Achtung:

Sofern der Ursprung der mit einem CAD-System in eine DFX-Datei exportierten Koordinaten nicht im Mittelpunkt der Rotor- bzw. Statorgeometrie (= Schnittpunkt der rechten und linken Sektorlinie des Pols) liegt, muss mit dem CAD-System ein zusätzlicher Punkt in diesem Punkt erzeugt werden.

- ARC,

- LINE,

- SPLINE: Aus den selektierten Informationen werden jeweils die Anfangs- und Endpunkte, bei Kreisen und Kreisbögen zusätzlich die Mittelpunkte und bei SPLINES zusätzlich die Kontrollpunkte mit Berücksichtigung eines "*PickPunktRadius"* generiert und von 1 bis n nummeriert.
- TEXT: Die zur Erzeugung der Geometrie in smartFEM benötigten zusätzlichen Informationen müssen als Texte in der Zeichnung enthalten sein.

Abb. 253: DXF-Import - Beispiel für den Import einer Statorgeometrie

Folgende Kennwörter und Parameter müssen obligatorisch oder können optional als "TEXT" in der CAD-Zeichnung enthalten sein:

Kennwort	Parameter	Beschreibung
Type of Motor	= PM - Inner Rotor = PM - Outer Rotor	Motortyp: PM BLDC - Inner Rotor PM BLDC - Outer Rotor PM DC – Brushed Motor
	= SR - Motor Inner Rotor	SR Motor
	= Sync. Reluctance Motor - Inner Rotor	Synchronous Reluctance Motor
	= Universal Motor	Universal Motor
	= PM - Linear Motor	PM - Linear Motor
	= Actuator	Aktuator

Obligatorische Kennwörter und Parameter

Position	= Rotor	Geometrietyp: Rotor
	= Stator	Stator
		Hinweis: Bei Linearmotoren sind Geometrien unterhalb des Luftspaltes als <i>"Rotor"</i> festgelegt, oberhalb als <i>"Stator"</i> .

Optionale Kennwörter und Parameter

Kennwort	Parameter	Beschreibung
Nicht verwendete Kennwörter haben den Wert = False	[] = default Wert, wenn kein Parameter definiert ist	
HalfPole	[= True]	Die Geometrie beschreibt einen halben Pol und wird im FEM-Modell gespiegelt.
CompletePole	[= True]	Die Geometrie beschreibt einen ganzen Pol und wird im FEM-Modell nicht gespiegelt.
	[= [True;] Asymmetric]	Die Geometrie beschreibt einen ganzen geometrisch unsymmetrischen Pol
MirrorPole	[= True]	Die Polgeometrie wird im FEM-Modell an der linken Polgrenze gespiegelt.
	= False	Die Polgeometrie wird nicht gespiegelt
SegmentedGeometry	[= True]	Eine segmentierte Geometrie mit n Polen pro Segment.
CompleteGeometry	[= True]	Die vollständige Geometrie mit allen Stator- bzw. Rotorpolen (360°mech). Sie kann nicht-symmetrisch in Bezug auf die einzelnen Pole und damit nicht-periodisch in Bezug auf die BEMF sein. Sie wird ohne Veränderungen in das FEM-Modell übernommen. Die FEM-Berechnungen erfolgen über 360°mech Rotation des Rotors.
	[= True; Periodic]	Die vollständige Geometrie ist periodisch in Bezug auf die BEMF. Die FEM- Berechnungen laufen über die BEMF- Periode [°mech].
CoordinateSystem	[= xy]	Die Geometrie ist in der xy-Ebene beschrieben.
	= rz	Die Geometrie ist rotationssymmetrisch.

Zur Beschreibung der Materialtypen von Flächen müssen folgende Texte enthalten sein. Die Verankerungspunkte der Textboxen müssen in den entsprechenden Flächenelementen liegen. Mehrere Parameter müssen durch Semikolon ";" getrennt werden. Es ist keine bestimmte Reihenfolge der Parameter vorgeschrieben.

Die auf diese Weise definierten Flächen können im Geometriefenster der Topologie mit der Maus angewählt und bearbeitet werden. Flächen, für die kein Materialtyp definiert wurde, werden als Luft definiert und können nicht bearbeitet werden.

Kennwort	Parameter	Beschreibung
Magnet	[· MaterialNo = #]	Material = Magnet
	oder [; MatNo = #]	"Materials" definierten Materialdaten
	[; MagAngle = #.##]	Winkel der Magnetisierungsrichtung in Bezug auf die x-Achse [°mech]
Steel		Material = Elektroblech
	[; MaterialNo = #] oder [; MatNo = #]	Material Nummer entsprechend den in " <i>Materials</i> " definierten Materialdaten
	[; Length = #.##]	Relative Länge in axialer z-Richtung [% der Motorlänge Lmot]
Coil		Material = Wicklung
	[; MaterialNo = #] oder [; MatNo = #]	Material Nummer entsprechend den in "Materials" definierten Materialdaten
	[; SlotSideIndex = #]	Angabe auf welcher Seite in der Nut die Wicklung liegt
[Air]		Material = Luft

Optionale Parameter

Folgende Texte können enthalten sein. Sofern keine Angaben enthalten sind, ermittelt smartFEM diese Werte automatisch aus den selektierten Geometriepunkten.

Hinweis:

Außenradien müssen dem maximalen bzw. minimalen Abstand zwischen Mittelpunkt und der Außenbzw. Innenkontur der jeweiligen Geometrie entsprechen. Bei nicht kreisförmigen Konturen, können die Radien an den Sektorlinien der Polsegmente unter Umständen nicht aus den Geometriepunkten ermittelt werden. In diesem Fall müssen sie angegeben werden.

Kennwort	Parameter	Beschreibung
Rro =	#.###	Außenradius Rotor
Rri =	#.###	Innenradius Rotor
Rso =	#.###	Außenradius Stator
Rsi =	#.###	Innenradius Stator
Np =	##	Anzahl Pole für Rotor bzw. Stator entsprechend " <i>Position</i> "
alternativ Ns = bzw. Nm =	## ##	Anzahl Statornuten Anzahl Magnetpole

Knotenabstände bzw. Anzahl Segmente können für Linien und Kreisbögen wie folgt angegeben werden. Die Textboxen müssen so positioniert werden, dass die Verankerungspunkte möglichst nahe an den jeweiligen Linien bzw. Kreisbögen liegen.

NDistFact = oder NDist =	#.#### (default: 1.0)	Faktor zur Festlegung der Knoten- dichte = Bna * NDistFact = Bna * NDist. Die Anzahl der Segmente ergibt sich aus NSeg = Length / NDistFact.
NDistFactNlin = oder NlinDist =	#.#### (default: 0.0=	Faktor zur Festlegung einer nicht linearen Knotendichte auf Linien. Die Anzahl der Segmente NSeg wird berechnet. Bei positivem Faktor und Positionierung der Textbox näher an den Endpunkt der Linie erfolgt die Verteilung der Knotendichte von gering nach hoch in Richtung von Start- nach Endpunkt, bei negativem Faktor oder Positionierung näher am Startpunkt in umgekehrter Richtung.

NSeg =	###	Anzahl der Segmente, in die Linien, Kreis- bögen und Kurven durch die Knoten unter- teilt werden. NDistFact wird berechnet.
--------	-----	---

Weitere optionale Parameter

	Parameter	Beschreibung
MiddleSlotLine		Kennzeichnung der Linie, die bei unsymmetrischen Geometrien die Nut in rechte und linke Nutseite teilt.
NCoils = NCoilsPerSlot =	1 oder 2, default = 2	Ein-, Zwei- oder Mehrschichtwicklung (Wicklung in linker/rechter Nuthälfe bei Zweischichtwicklung)
CoilsLayer =	UpDown	Wicklung in oberer/unterer Nuthälfte (nur bei Zweischichtwicklung)
	RingCoils	Ringwicklung um den Statorrücken
NSlotsPerSegment	##	Anzahl der Nuten je Segment bei segmen- tierten Geometrien ("SegmentedGeometry")
NPhases =	##, default = 3	Anzahl der Phasen
Bna =	#.###, default: = 1.0°mech	BasisKnotenWinkel = minimaler Winkel zwischen zwei Knoten am Luftspalt.
Bnd =	#.###, default: = 0.3mm	BasisKnotenAbstand = minimaler Abstand zwischen zwei Knoten am Luftspalt
Dp =	#, default = 2	Anzahl Nachkommastellen für die Rundung der eingegebenen und angezeigten Parameterwerte

Mit dem CAD Programm "Solid Edge 2D-Drafting" von Siemens PLM Software können Texte auch mittels einer Textblase den jeweiligen Linien, Kreisbögen, etc. zugeordnet werden.

7.4.3 Beispiele

7.4.3.1 Beispiel für eine Statorgeometrie

Abb. 254: DXF-Import - Beispiel Statorgeometrie

smartFEM erkennt die Lage in der xy-Ebene und dreht die Topologie so, dass sie wie die "normalen" Standard Topologien angezeigt werden.

7.4.3.2 Beispiel für eine Rotorgeometrie mit Knotendichten

Abb. 255: DXF-Import - Beispiel für eine Rotorgeometrie

Anordnung der Informationen über Knotendichten mittels Textboxen und Textblasen. Textblasen können z.Z. nur in Solid Edge 2D-Drafting von Siemens PLM Software verwendet werden und können unterschiedliche Anfangs-/Endsymbole (z.B. Pfeil, Kreis, etc. ohne abknickende Linien) enthalten.

7.4.3.3 Beispiel einer Rotorgeometrie mit "SPLINE"

In CAD-Zeichnungen können *"Splines"* mit n Kontrollpunktes und einem Grad < n für alle Rotor- und Statorgeometrien enthalten sein.

Abb. 256: DXF-Import - SPLINES

Darstellung des Splines in smartFEM als Kurve "C1" und Kontrollpunkten

7.4.3.4 Beispiel für eine vollständige Statorgeometrie

Abb. 257: DXF-Import - vollständige Geometrie

7.4.3.5 Beispiel für eine vollständige Statorgeometrie mit Offset

Sofern im Nullpunkt einer Statorgeometrie eine Linie gezeichnet wird, wird in smartFEM eine Exzentrizität zwischen Rotor und Stator entsprechend Länge und Richtung der Linie erzeugt.

Abb. 258: DXF-Import - Exentrizität zwischen Rotor und Stator

7.4.4 Verwendung von Layern im CAD-Modell

Sofern das CAD-Modell mehr Informationen als die für den dfx-Import notwendigen enthalten soll (z. B. Hilfslinien, Bemaßungen, etc.), müssen Layer verwendet werden. Dabei müssen die für den DXF-Import nach smartFEM erforderlichen Zeichnungsobjekte und Texte in Layern enthalten sein, die ihrerseits das Wort "smartFEM" enthält. Es können mehrere "smartFEM"-Layer definiert werden. Alle anderen Informationen müssen in anderen Layer abgelegt werden. Sofern keine Layer verwendet werden, darf das CAD-Modell nur die für den smartFEM DXF-Import erforderlichen Informationen enthalten.

Abb. 259: CAD Import - Verwendung von Layern

7.4.5 Kennwörter und Parameter für Linear Motoren

Topologien für Linear Motoren bestehen immer aus der Stator- und Rotorgeometrie. Definitionsgemäß muss sich die Rotorgeometrie unterhalb der Stator- und Luftspaltgeometrien befinden. Zur Identifikation von Geometrie- und Motorparametern müssen verschiedene Information als *"Basic Parameter"* in der DXF-Zeichnung enthalten sein. Die Verankerungspunkte der Texte müssen sehr nah an die entsprechenden Punkte positioniert werden.

Kennwort	Parameter	Beschreibung
Ns oder NsComplete	= #	Gesamtanzahl der Nuten.
NCoils oder NCoilsPerSlot	= {1; 2}, default = 2	Ein-/Zweischichtwicklung.
Np oder NpMotor	= #	Anzahl Pole innerhalb der aktiven Motorlänge.
NpComplete	= #	Gesamtanzahl der Pole.
MotorLength	= P ₁ : P ₂	Geometriepunkte, die die aktive Motorlänge kennzeichnen.
MotorStartsXCoord	= P ₃	Geometriepunkt zur Kennzeichnung der x- Koordinate des ersten linken Punktes der Statorgeometrie.
SlotPitchLength	= P ₄ : P ₅	Geometriepunkte, die die Länge eines Statorpols kennzeichnen.
SlotStartsXCorrd	= P ₆	Geometriepunkt zur Kennzeichnung der x- Koordinate des ersten linken Punktes des ersten linken Statorpols.
AirGapThickness	= P7 : P8	Geometriepunkte, die die Luftspaltweite kennzeichnen.

Obligatorische	Kennwörter	und	Parameter
Obligatorische	I CHIII WOILCI	unu	rarameter

Optionale Kennwörter und Parameter

Kennwort	Parameter	Beschreibung
AirGapIncrement	= P ₉ : P ₁₀	Höhe mittleren Luftspaltlayers = Knotenabstand der oberen und unteren Linie des mittleren Luftspaltlayers. Wenn nicht in DXF-Datei gesetzt, dann wird wie folgt AirGapIncrement berechnet: AirGapIncrement = AirGapThickness / 3

Beispiel:

Abb. 260: DXF-Import Linear Motor - Basisparameter

Abb. 261: DXF-Import Linear Motor - Basisparameter "AirGapThickness", "AirGapIncrement"

Kennwort	Parameter	Beschreibung
Type of Motor	= Actuator	Modelltyp
[CoordinateSystem]	= [xy rz] (xy=default)	Koordinatensystem xy oder rotations- symmetrisch
NPhases	= #	Anzahl Phasen
Ns	= #	Anzahl Nuten
NCoilsPerSlot	= #	Anzahl Wicklungen pro Nut
CompletePole oder HalfPole	[= False True]	vollständige oder halbe Geometrie (erforderlich für KoordinatenSystem = rz)
ForcePath		Linien, die den Pfad für die Berechnung der auf den Kolben wirkenden Kräfte kennzeichnen.
MoveVector		Line zur Kennzeichnung des Vektors für die Bewegungen des Kolbens.

7.4.6 Kennwörter and Parameter für Aktuatoren

Abb. 262: DXF-Import Aktuator - Basisparameter

Beispiel:

NoCA0	\odot \bowtie \square \bowtie \varkappa \varkappa \varkappa \rtimes \rtimes			
		Topology Filename: LA_CADdata.tol File Edit Magnets Options Types of Rotor: LA_CADdata Coils per Slot: 1 Coil 2 Coils Import File: LA_Actuator_0*.dd Geometry Basic Bements ForcePath MoveVector length angle displacement of platen 	FP MVlength MVangle DispP	
Plots © Geometry C Mater	ial C Nodes C Models C Complete			

Abb. 264: DXF-Import Aktuiator - Force Path und MoveVektor in smartFEM (Geometry Plot)

MOCAO	Air Platen Steel Forcer Steel Coils		
	Topology Filename: LA_CADdata.tol		×
	File Edit Magnets Options		
	1 M (M		
	Types of Rotor: LA_CADdata		•
	Coils per Slot: 1 Coil 2 Coils 		
	Import File: [LA_Actuator_0".dxf		<u></u>
	Geometry Basic Elements		
	ForcePath	FP	0 mm
	MoveVector length	MVlength	2 mm
	angle	MVangle	0 deg
	displacement of platen	DispP	1 mm
Plots Models			
C Geometry C Material C Nodes C Topology	C Model C Complete		

Abb. 265: DXF-Import Aktuator - ForcePath und MoveVector in smartFEM (Material Plot)

Nach dem DXF-Import wird die Geometrie des Aktuators wie in der CAD Zeichnung angezeigt.

Abb. 266: DXF-Import Aktuator - Richtung des "MoveVector" ≠ 0°

Nach "*Apply*" wird die Geometrie automatisch so rotiert, dass der "*MoveVector*" in Richtung 0°mech (x-Achse) liegt und damit die in x- und y-Richtung wirkenden Kräfte berechnet werden können (x-Richtung = Bewegungsrichtung).

Abb. 267: DXF-Import Aktuator - Rotation der Geometrie mit "MoveVector" in Richtung der x-Achse

Abb. 268: DXF-Import Aktuator - Kräfte in x- und y-Richtung bei unsymmetrischen Geometrien

7.4.7 Funktionsbeschreibung DXF-Import

Nach Selektion der Topologie CAD_Rotor bzw. CAD_Stator werden zunächst ein leeres Geometrieund Parameterfenster angezeigt und ein Auswahlfenster zur Selektion einer DXF- oder CSV-Datei angezeigt.

Abb. 269: DXF-Import - Selektion der DXF- bzw.CSV-Datei

Nach Auswahl der entsprechenden Datei erfolgt der Import mit Aufbau der Geometrie und Anzeige der Parameterliste:

Abb. 270: DXF-Import - Beispiel importierte Stator-Geometrie

Die Informationen zu einzelnen Linien, Kreisbögen, etc. können durch Eingabe ihrer Indexnummer angegeben werden. Neben den numerischen Informationen in der Parameterliste werden kontext-sensitive Hilfsinformationen im Grafikfenster aufgeblendet.

Abb. 271: DXF-Import - Informationen zu Geometrieelementen

Durch Eingabe der Linien-, Bogen-, Area- und Punktnummern werden zusätzliche Informationen angezeigt. Dabei können die Kontenabstände können für jedes Element verändert werden.

Beispiel:

-

- Kreisbogen: A5
- Mittelpunkt:
- Startpunkt: 18
- Endpunkt:
- Faktor für minimalem Knotenabstand:
- Radius:

1 mm 97,73°

16

17

0,5

Öffnungswinkel:

In der Darstellung "Geometry" und "Nodes" des Grafikfensters können einzelne Elemente auch mit rechtem Mausklick auf das entsprechende Element selektiert werden.

		PM BLDC Topology Filename: CS_CADdata.top	
A5	18	Types of Stator: CS_CADdata C One Coll Per Stot: P Two Colls Import File: [CS_W.cnv Geometry Base:] Barnerts	• Per Stat
		Total number of lines	17
17	16	Line No.	L 0
		Node distance	0
	· · · · · · ·	Node distance factor	ja
t		Length	0 mm
	1	Total number of arcs	8
	Models A company of company	Are No.	AB
(* Nodes	C Roby IF Stator C Complete C FEM Mov *	Node distance	0.5
Radius=54,2440mm	, Angle=83,9020*	Radius	1
		Apex angle	(97,73 deg

(Knotenabstand = Faktor * Basisknotenabstande)

Abb. 272: DXF-Import - Selektion eines Geometrieelementes

7.4.8 Voraussetzungen und Fehlerhinweise

Bei der Erstellung von DXF oder CSV Dateien sind folgende Punkte zu beachten, damit smartFEM ein simulationsfähiges Geometriemodell aufbauen kann.

7.4.8.1 Freie Flächenelemente

In den Geometrien dürfen keine Flächenelemente (Inseln) enthalten sein, die nicht durch eine Verbindung mittels Linie oder Kreisbogen an ein anderes Flächenelement angebunden sind.

Falls das dennoch der Fall ist, wird das entsprechende Flächenelement in der Geometriedarstellung mit roter Umrandung dargestellt, eine Fehlermeldung ausgegeben und die Schaltfläche "Bad Geometry" anstelle "Apply" angezeigt. Es **muss** dann eine Verbindung im CAD-Zeichnung hergestellt und der Import erneut durchgeführt werden.

Abb. 273: DXF-Import - freie Flächenelemente

7.4.8.2 Eindeutige Punkte

Rundungsdifferenzen bei der Erzeugung der DXF- bzw-CSV-Dateien können beim Import dazu führen, dass gleiche Punkte u.U. leicht unterschiedliche xy-Koordinaten aufweisen und dann als zwei Punkte erkannt werden. Um dies zu verhindern, kann in der Parametergruppe "Basic" der minimale Abstand "MinDist" zwischen zwei Punkten als Parameter angegeben werden. yx-Koordinaten die zueinander einen kleineren Abstand aufweisen, werden als ein Punkt erkannt.

3 Topology Filename: CR_CADdata.top		×
File Edit Magnets Options		
5 CP		
Types of Rotor: CR_CADdata		•
Coils per Slot: C 1 Coil C 2 Coils		
Import File: CR_W5_CompletePole.dxf		
Geometry Basic Elements		
Basic node angle	Bna	1 deg
Decimal places	Dp	2
Minimum distance (for detection of 2 single points during dxf-import)	MinDist	0,001 mm
Priority {0=Node Distance Factor, 1=Number of Segments}	NdPrio	0
Type of help line text {0-parameter name, 1=value, 2=name+value, 3=name+value+unit}	HItType	0
Rotation angle of the geometry between CAD and smartFEM	AlphaRotCAI	D 0 deg

Abb. 274: DXF-Import - Minimum Distance of Points

7.5 DXF Export

Die mit smartFEM erstellten Geometrien können auf zweierlei Arten im dxf-Format exportiert werden, um sie mit anderen Programmen weiterverwenden zu können:

- Export aus dem jeweiligen Topologiefenster

Komplettes Geometriemodell inkl. aller zugehöriger Information als Texte für z.B. CAD-Systeme für Änderungen von Geometrie und/oder Textparametern mit anschließendem Re-Import in smartFEM

- Export über das smartFEM Hauptmenü

Verschiedene Arten des Geometriemodells für z.B. CNC-Maschinen zur Blechschnitterzeugung

7.5.1 Export aus dem jeweiligen Topologiefenster

Diese Funktion wird über das im Topologiefenster angegebene Menü "File - Export Topology to DXF" aufgerufen.

Abb. 275: DXF Export - Topologie

Anschließend kann der Benutzer angeben, in welchem Verzeichnis die DXF Datei gespeichert werden soll. Für die jeweiligen Informationstypen werden verschiedene Layer mit dem Begriff "smartFEM…" angelegt. Die Textgrößen der Knotendichten werden den jeweiligen Längen der Linien und Kreisbögen angepasst.

Nach dem Öffnen in einem CAD-System können Geometrie und Textparameter verändert werden und nach dem Abspeichern als DXF-Datei wieder in smartFEM mit der entsprechenden CADdata Topologie (in diesem Beispiel CR_CADdata) importiert werden.

Abb. 276: DXF Export - Darstellung in einem CAD System

In dem 2D-Modell des CAD-Systems können beliebige Zeichnungs- und Textinformationen enthalten sein. Die für den Import in smartFEM erforderlichen Informationen und nur diese müssen bzw. dürfen in Layern enthalten sein, die den Text "smartFEM" enthalten.

Abb. 277: DXF-Export - smartFEM Layer im 2D-Modell des CAD-Systems

7.5.2 Export über das smartFEM Hauptmenü

Mit dieser Funktion werden ausschließlich Geometriedaten entsprechend der jeweiligen Ansicht im smartFEM Geometriefenster in eine DXF Datei exportiert:

- Rotor
- Stator
- Periodisches Modell
- FEM-Modell

zusätzlich, z.B. für die Programmierung von CNC-Maschinen

- Export Material Contours
- Export Steel Material Contours

PM BLDC	
elmocas	
Motor Outer Diameter: 53 mm Number of Slots: 9	
Number of Magnets: 6	
Plots © Geometry C Material C Node	s C Rotor C Stator C Complete C FEM Model

Abb. 278: DXF Export - Beispiel Stator Geometrie

Ø	sm	artFEM*** Core3 - MotorDesignTemp.mot	-			ing it haven a
Γ	File	View Tools Windows Help		_		
	1	New	Strg+N			
Ì	2	Open	•	h		
	-	Save	Strg+S			
		Save As		Ľ		Air
Ir		DXF Export	•		Rotor	Stator Steel
		FEMAG	+		Stator	Coils
		Generate Project Report			Periodic Model	
		D:\elmoCAD\Temp_Presentation\MotorDiagrams\Test\MotorDesignTemp_is100_theta0.mot	Strg+1		FEM Model	
		D:\elmoCAD\Temp\MotorDesignTemp_1.mot	Strg+2		Export Material Contours	
		D:\elmoCAD\Temp\MotorDesignTemp.mot	Strg+3		 Export Steel Materials Contours 	
		Exit	Alt+F4			-
1	-					

Abb. 279: DXF Export - Selektion der Funktion

Abb. 280: DXF Export - Beispiel Kontur des Stator Blechpaketes

Zum Export des gesamten Models muss über die Schaltfläche "Winding Defined" der Wicklungseditor geöffnet werden. Es wird anschließend das ganze Model dargestellt und kann mit *"File – DXF Export – Periodic Model"* exportiert werden. Überflüssige Zeichnungslinien müssen in einen CAD-System entfernt werden, um z.B. nur die Kontur weiterverarbeiten zu können.

Abb. 281: DXF-Export - gesamtes Maschinenmodell

Abb. 282: DXF-Export: Materialkonturen

7.6 CASPOC

Zur Simulation der Motorenregelung in dem Simulationstools für Leistungselektronik *CASPOC*¹ können die für die Ld/Lq Berechnung erforderlichen Parametern direkt über den Dialog "Data - Caspoc - Add Sets" erzeugt und anschließend mit "*Solve All*" berechnet werden.

	Contions	Iculatio	n Data	1		
	d-Axis=330	°el = 11 ls_eff	Jata	Add Remove))	Iq_eff (A) Ld (H)
Plots				Paste Currents to Set No.1 Caspoc	•	Add Sets
Ld-Lg						capore ne
FEMAG						Solve All

Abb. 283: CASPOC - Berechnungsparameter

Anschließend kann die erzeugte Ergebnistabelle mit weiteren Ergebnisdaten in eine Datei im XML-Format gespeichert werden, die direkt von CASPOC verarbeitet werden kann.

🚱 Ld-Lq Ca	lculatio	n					
Options	Edit	Data				-	
d-Axis=330	°el = 11	4	Add		•		
Set No.	ls_eff	F	Remove		•	lq_eff [A]	Ld [H]
1	3,536	F	Paste Curre	ents to Set No.1	•	1,165E-16	,3186E-03
2	3,536	(Caspoc		•	Add S	ets
3	3,536	_	-70 -3,322			Export	File
	2 520		00	2.002		1 700	1 21705 02

Abb. 284: CASPOC - Speicherung der Ergebnisdaten

Die Datei enthält folgende Daten::

Motorparameter

- Statorinduktivität Ld
- Statorinduktivität Lq
- Wicklungswiderstand
- Trägheitsmoment des Rotors
- Polpaarzahl

Datentabelle1

- Rotorposition [°mech]
- Phasenverschiebung Strom [°el] (nicht benutzt = 0)
- Amplitude des Stroms (nicht benutzt = 0)
- Drehmoment (= Rastmoment)
- ke1 Spannungskonstante Phase U
- ke2 Spannungskonstante Phase V
- ke3 Spannungskonstante Phase W
- Flussverkettung 1
- Flussverkettung 2
- Flussverkettung 3

¹ CASPOC ist ein Produkt von Simulation Research, NL - Alphen aan den Rijn

Datentabelle2

- Rotorposition [°mech] (= 0)
- Phasenverschiebung Strom [°el]
- Amplitude des Stroms
- Drehmoment
- ke1 Spannungskonstante Phase U (nicht benutzt = 0)
- ke2 Spannungskonstante Phase V (nicht benutzt = 0)
- ke3 Spannungskonstante Phase W (nicht benutzt = 0)
- Ld
- Lq
- Flussverkettung 3 (nicht benutzt = 0)

	А	В	С	D	E	F	G	Н	I
							lookupdata	lookupdata	lookupdata
1	name 💌	name2 💌	value_si 💌	description 🗾 🔽	name3 💌	name4 💌	row 1 🛛 💌	row 2 💌	row 3 🛛 💌
2	1	Ld	0,000321801	Stator inductance d Axis					
3	2	Lq	0,000422774	Stator inductance q Axis					
4	3	Rs	0,155299601	Winding Resistance					
5	4	J	0,0001	Rotor Inertia					
6	5	р	3	Number of Pole Pairs					
7					0	Rotor Position(°mech)	0	0,017453293	0,034906585
8					1	Theta Current(°el) not used set to zero	0	0	0
9					2	Current Amplitude(A) not used set to zero	0	0	0
10					3	Temperature(Celcius)	20	20	20
11					4	Cogging Torque(Nm)	0,007046272	-0,006898098	-0,02323248
12					5	Ke1(Vs/rad)	-0,002313303	-0,002547804	-0,002780866
13					6	Ke2[Vs/rad]	0,00464771	0,004647788	0,004647385
14					7	Ke3[Vs/rad]	-0,00231503	-0,002080147	-0,00184546
15					8	FluxLinkage1(Vs)	0,013270199	0,012865044	0,012420811
16					9	FluxLinkage2(Vs)	-8,72E-07	0,000773758	0,001548392
17					10	FluxLinkage3(Vs)	-0,013269248	-0,013635474	-0,013962494
18					0	Rotor Position(°mech) set to zero	0	0	0
19					1	Theta Current(°el)	1,745329252	1,745329252	2,268928028
20					2	Current Amplitude(A)	20	10	10
21					3	Temperature(Celcius)	20	20	20
22					4	Torque(Nm)	1,38	0,686	0,551
23					5	Ke1(Vs/rad) not used set to zero	0	0	0
24					6	Ke2(Vs/rad) not used set to zero	0	0	0
25					7	Ke3(Vs/rad) not used set to zero	0	0	0
26					8	Ld(H) FluxLinkage1(Vs) used for Ld	0,000336764	0,000321772	0,00031937
27					9	Lq(H) FluxLinkage2(Vs) used for Lq	0,000414097	0,000423871	0,00042504
28					10	FluxLinkage3(Vs) not used set ot zero	0	0	0

Abb. 285: CASPOC - Beispiel XML-Datei
8 Notizen